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Advancing forest carbon projections 
requires improved convergence 
between ecological and economic models
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Abstract 

Forests have the potential to contribute significantly to global climate policy efforts through enhanced carbon 
sequestration and storage in terrestrial systems and wood products. Projections models simulate changes future 
in forest carbon fluxes under different environmental, economic, and policy conditions and can inform landowners 
and policymakers on how to best utilize global forests for mitigating climate change. However, forest carbon mod-
eling frameworks are often developed and applied in a highly disciplinary manner, e.g., with ecological and economic 
modeling communities typically operating in silos or through soft model linkages through input–output parametric 
relationships. Recent disciplinary divides between economic and ecological research communities confound policy 
guidance on levers to increase forest carbon sinks and enhance ecosystem resilience to global change. This paper 
reviews and summarizes the expansive literature on forest carbon modeling within economic and ecological dis-
ciplines, discusses the benefits and limitations of commonly used models, and proposes a convergence approach 
to better integrating ecological and economic systems frameworks. More specifically, we highlight the critical feed-
back loops that exist when economic and ecological carbon models operate independently and discuss the benefits 
of a more integrated approach. We then describe an iterative approach that involves the sharing of methodology, 
perspectives, and data between the regimented model types. An integrated approach can reduce the limitations 
or disciplinary bias of forest carbon models by exploiting and merging their relative strengths.

Introduction
Background
Forests play a critical role in the global carbon cycle. They 
can act both as a carbon sink and source of emissions 
through changes in land use, management and distur-
bance [1–4]. Globally, forests cover approximately 31% of 
the terrestrial land mass, store approximately 45% of the 
total terrestrial carbon (861 ± 66 Pg C) in aboveground 
(AG) and belowground (BG) live biomass, soils, dead-
wood and litter [5, 6]. Forests account for approximately 
32% of the total annual land carbon (C) sink globally. 

Analysis of potential forest C mitigation strategies often 
relies on the use of forest C models to simulate C stor-
age, sequestration, and emissions fluxes under changing 
environmental, policy, and socioeconomic conditions, 
including emerging disturbance regimes (e.g. wild-
fire, hurricanes, pest and pathogens, land use). Recent 
modeling research suggests that forests could play an 
increasingly important role in stabilizing climate change 
long-term through enhanced C sequestration (in terres-
trial and wood product pools) and the supply of biomass 
feedstocks to the energy system [7–11].

However, despite the importance of forests to the 
global C budget and policy ambitions to mitigate climate 
change through forest preservation, management, and 
expansion [9], critical research gaps remain regarding 
future forest C stock development and how it might be 
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impacted by global change drivers. We have categorized 
the drivers influencing the forest ecosystems into three 
broad divisions: socioeconomic, resource management, 
and ecosystem change drivers- discussed in detail in 
Supplementary Table  S1, Additional File 1. These driv-
ers apply both direct and indirect influences on C stor-
age and sequestration within forest ecosystems. Direct 
and indirect impacts of these drivers on forest C stock 
development are complex, involving multiple levels of 
influence and associated interactions that are challeng-
ing to study empirically or through field observation [12]. 
Ecosystem drivers, including deforestation, wildfires, and 
changing temperatures, have a direct influence on the C 
dynamics, but management and land use change dynam-
ics are affected by the policy and markets for land-based 
commodities. For instance, land use changes like defor-
estation, afforestation, and fragmentation are largely 
driven by policy decisions and global market forces, but 
interact with C, water, and nutrient cycling at local scale. 
Higher population growth can lead to increased meat 
consumption and agricultural demand and the need for 
more developed land, driving deforestation [13], but pro-
portionally higher levels in income growth can result in 
forest expansion [10]. In contrast, policies to mitigate 
GHG emissions and increase land carbon stocks can 
result in additional forest expansion and more sustaina-
ble management practices, which will influence local eco-
logical systems [14]. Furthermore, an increased market 
demand for wood-based bioenergy (supported by recent 
IPCC reports), expansion of C markets that offer incen-
tives for improved forest management, and afforestation 
can have meaningful impacts on C balances at ecosystem 
scale, but ecological models are not designed to simulate 
land management responses to policy and market drivers 
[15]. Given the complex interactions between ecological 
and economic systems, one cannot fully decouple ecolog-
ical perspectives on C dynamics from economic drivers 
that affect land use and management decisions.

Economic and ecological models play an important 
role in the scientific literature for assessing the poten-
tial impacts of natural and anthropogenic disturbances, 
changes in land use, and forest management practices on 
natural resource conditions and C fluxes [16, 17]. Mod-
els vary in complexity, temporal and spatial domains, 
the input parameters required for model execution, and 
types of model outputs, including ones that can be vali-
dated from field and/or remote measurements. Further, 
models vary in their accounting of the driving factors of 
climate change. Forest C projections are often developed 
using a single model or disciplinary focus and may not 
capture critical feedback loops between ecological and 
socioeconomic systems. Forest C modeling must con-
tinue advancements to support mitigation and adaptation 

strategies that are resilient to future market and environ-
mental changes. This scientific advancement will require 
tighter coupling of ecological and economic modeling.

To address the integration of socio-economic and eco-
logical models in forest carbon research, it is essential 
to build on existing literature that has made significant 
strides in this area. For instance, Seidl et  al. discuss the 
spatial variability in forest carbon density and the multi-
scale drivers affecting it through high-resolution simula-
tion models and Lidar data [18]. Rammer examine the 
vulnerability of sustainable forest management to climate 
change, emphasizing the need for integrated ecological 
and socioeconomic models [19]. Additionally, Rammer 
and Seidl explore the integration of human and natural 
systems through adaptive management strategies in for-
est landscapes, highlighting the importance of socio-
economic factors in ecological modeling [20]. Similarly, 
Van Kooten and Sohngen provides an overview of the 
economics of forest carbon sinks, discussing the role of 
economic models in forest carbon sequestration and 
their integration with ecological models [21]. Van Kooten 
further delves into the intersection of climate science, 
economics, and policy, focusing on renewable energy and 
forest carbon management [22]. These studies under-
score the necessity of coupling ecological and economic 
models to enhance the accuracy and relevance of forest 
carbon projections.

Ecological modeling of forest C stocks and fluxes is 
often limited in its analysis on potential impacts of mar-
ket or socioeconomic factors that drive land use and 
management change, which could affect long-term sim-
ulations of ecosystem productivity. Ecological models 
often hold land use or management interventions fixed 
and exogenous over time, allowing ecosystem processes 
to operate in the absence of market- or policy-induced 
management regime changes. Although ecological mod-
els have frequently incorporated these market, policy, and 
land use factors into sensitivity analyses, they are infre-
quently endogenous within the structure of the model. 
Conversely, economic models can fall short in represent-
ing the complexity of the C cycle estimates, including 
relationships between nutrient and water cycles and for-
est productivity. Additionally, economic models can over-
simplify mechanics of biogeochemical cycles in managed 
forest systems, including the magnitude of autotrophic 
and heterotrophic respiration following forest harvest 
or disturbance. While research is extensive regarding 
the role of non-biomass carbon pools (i.e., dead organic 
matter, soils) in optimizing harvest rotations [23–26], 
this type of analysis is typically restricted to a stand or 
forest-level due to limited data availability. However, the 
compounded effect of extensive spatial scale disturbances 
and their enduring repercussions for prolonged time 
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periods emerges as consequential in large-scale forest 
management decisions. The data is particularly lacking 
for assessing soil and below-ground effects of restora-
tion efforts like afforestation [27], which is increasingly of 
interest to economic models aiming to estimate C effects 
of such initiatives. Given the immense complexity of for-
est ecosystems and forest markets, perfectly accounting 
for both aspects in a single model has proven to be dif-
ficult. Nonetheless, advancing forest C science and mod-
eling will require continued efforts towards converging 
single-disciplinary models. While there is precedent for 
data-sharing and soft linkages between ecological and 
economic systems, we argue that the limitations of each 
approach and common methods for linking projections 
of ecosystem productivity change with economic mod-
els of forest and land management could bias forest C 
projections.

Objectives
This paper aims to review the substantial scientific lit-
erature on forest C modeling. Rather than a compre-
hensive technical review, we tailor our synthesis around 
broad model types, advantages, limitations, and previ-
ous efforts to couple ecological and economic systems. 
Within each of these two modeling categories, a diverse 
array of model types exists, differing in temporal resolu-
tion, spatial scope, economic or ecological assumptions, 
and application. We review widely adopted models in 
each discipline, provide examples of their application, 
and address prominent limitations. A broader goal of 
this research is to provide policymakers, forest carbon 
scientists, the land use modeling community, and organi-
zations that develop forest carbon projections with an 
improved understanding of the potential tradeoffs of dif-
ferent modeling approaches and the need for improved 
systems thinking around forest carbon modeling. We use 
this review to guide our discussion on key points of inte-
gration and feedback loops that should be captured in 
integrated systems to improve long-term simulations of 
forest C dynamics. The specific objectives of this manu-
script are as follows: 

1.	 Provide an overview of common ecological and 
economic models of forest C, highlighting relative 
strengths and deficiencies of individual models

2.	 Highlight current research gaps and provide contex-
tual examples to highlight how modeling ecological 
or economic systems in isolation misses critical feed-
back loops

3.	 Suggest a roadmap for improved convergence of for-
est C modeling between ecological and economic 
disciplines.

Ecological forest carbon models
Empirical models
Empirical, also called growth and yield, models like the 
USFS Forest Vegetation Simulator and LobDSS are 
designed to simulate forest survival, growth, and yield by 
considering factors such as edaphic conditions, competi-
tion, and silvicultural treatments. Empirical models often 
rely on extensive datasets of field measurements collected 
in a systematic approach to calibrate and validate the 
simulations. Field measurements involve sample plots, 
or subsets of plots, from the study region and are used 
to extrapolate simulation results. Inventory data typi-
cally includes site characteristics, management history, 
and disturbance history. Observations also monitor stand 
growth, forest establishment, and mortality, supporting 
the development of allometric equations to simulate C 
accumulation, stocking, and productivity as a function 
of time, ecological inputs, and climate inputs [28]. These 
models are primarily focused on predicting AG biomass 
volume, as these attributes can be readily converted into 
estimates of biomass C. Repeated simulations conducted 
with these models yield estimates of wood C accumula-
tion rates.

A prominent empirical ecological model is the Euro-
pean Forest Information SCENario Model (EFISCEN), 
which projects European forest development using 
national inventory data. The required data consists of 
area, stock volume, and annual growth defined by pro-
ductivity, ownership, species, stand age, and region. 
Based on this data, EFISCEN estimates forest composi-
tional attributes, thinning and harvests, forest carbon 
volume, and climate attributes [29]. This model has been 
applied widely in Europe on both a national and regional 
scale. Verkerk et  al. uses estimates from EFISCEN to 
assess potential availability of biomass in 39 European 
countries, providing insights on target locations for poli-
cies aiming to increase woody biomass supply [30]. EFIS-
CEN has also been used in tandem with other models, 
such as in Lotze-Campen et al. where it is coupled with 
two other models (CAPRI and Dyna-CLUE) to create a 
large array of land-use data at a sub-national scale in the 
EU [31].

The Carbon Budget Model of the Canadian Forest Sec-
tor (CBM-CFS3) relies on growth and yield curves from 
inventory data to derive AG biomass volume [27, 32]. 
However, it also incorporates process-based components 
such as C distribution to BG pools, temperature-depend-
ent decay rates, and disturbance to account for manage-
ment and simulate impacts on carbon stocks [33, 34]. 
National Forest Inventory (NFI) models in Europe are 
notable for their enhanced spatial analysis and mapping 
accuracy through the inclusion of remote sensing tech-
nologies and GIS. These models utilize satellite imagery, 
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LiDAR, and GIS to provide detailed and accurate forest 
metrics. For example, a study on European NFIs high-
lights the use of remote sensing for pre-classifying sam-
ple plots and improving growing stock monitoring [35]. 
Additionally, the integration of NFI data with airborne 
laser scanning in Spain has been shown to significantly 
improve forest yield predictions [36].

Succession models
Succession models simulate the forests over a defined 
time horizon period using simplified parameters for envi-
ronmental variables and processes in a study area. They 
monitor long-term changes in the structure of forest 
ecosystems using species-specific characteristics under 
varying climatic conditions and disturbances. Biocli-
matic variations (i.e. availability of water, nutrients, and 
light) reflect the competition and growth limitations 
impacting forest growth dynamics. Gap models are the 
first generation of succession models and simulate indi-
vidual trees on a grid and how they interact and com-
pete for resources, reflecting the gap dynamics resulting 
from natural disturbances. The second generation of 
these models represent landscape-level dynamics, sim-
plifying stand-level processes. Landscape models assess 
the impact of extrinsic disturbances at a larger spatial 
scale. Recent developments in the field of geomatics have 
improved the efficiency of models in handling large tem-
poral and spatial data to simulate long-term multiple dis-
turbance mechanisms.

Gap models
The JABOWA model, first developed in 1970, laid the 
foundation for gap models in forest ecology. It simu-
lates individual tree growth, regeneration, and mortality 
functions for individual trees on a small homogeneous 
patch at an annual time step [37, 38]. The latest version, 
JABOWA-3, incorporates detailed carbon dynamics, 
allowing for growth and yield predictions under diverse 
forest conditions [39]. Although the first-generation gap 
models were not explicitly designed to simulate carbon 
dynamics, they are crucial as the conceptual basis for 
many current ecological carbon models.

Building on JABOWA’s principles are FORET, ZELIG 
and LINKAGES models. FORET evaluates the long-term 
effects of species loss on forest composition and struc-
ture [40] by incorporating growth reductions as biomass 
approaches its maximum recorded value [41]. ZELIG 
captures interactions and competition between grid cells, 
reflecting landscape structures and succession dynamics 
[42, 43]. LINKAGES represents soil processes, BG nutri-
ent cycles, water dynamics, and species composition to 
determine tree growth, mortality, and establishment [44].

The FORECE model, derived from FORET, simulates 
the alpine region of south central Europe, classifying 
growth-limiting factors into intrinsic (species-specific) 
and extrinsic (climate and environmental) variables [45]. 
Further building on FORECE, FORCLIM specializes 
in examining the forest impacts of climate change [46]. 
FORSKA models are unique in their explicit representa-
tion of vertical canopy distribution. They assume uniform 
leaf area distribution along the stem height, simplifying 
the modeling of shading within the crown [47]. FORSKA 
models, however, share similar representations of climate 
and resource dynamics with the FORET model and are 
largely deterministic [48]. FORSKA models simulate for-
est succession and associated atmospheric C exchanges 
based on the distribution of species by age class, AG bio-
mass, and productivity [49].

SORTIE, a second-generation Individual Based Model 
(IBM), improves on gap modeling by introducing light 
competition and spatial assignments for individual tree 
[41], which supports the determination of the distri-
bution of species, age class structure, and landscape C 
dynamics [50]. Additionally, the PICUS model, a hybrid 
forest gap model, combines a 3D gap model approach 
with the physiologically-based production approach of 
3PG (Process model) [51], and is widely applied in Europe 
to assess the impact of climate change and develop adap-
tive management strategies such as thinning and alterna-
tive harvest regimes [52].

Landscape models
Landscape models such as LANDIS II are spatially 
explicit forest landscape models that simulate ecological 
succession, incorporating factors such as seed dispersal, 
land management, disturbances, C dynamics, and cli-
mate change on various spatial scales [53–55], providing 
improved flexibility in spatial and temporal resolution 
compared to its predecessor [56, 57]. The structure of 
the model enables users to select from various extensions 
covering different ecological processes [58]. Notable 
extensions include the Forest Carbon Succession Exten-
sion [59] and the Net Ecosystem Carbon & Nitrogen 
(NECN) Succession extension [60–62].

Recent applications of LANDIS II demonstrate its ver-
satility in addressing complex ecological questions. For 
example, the model has been used to simulate fire, veg-
etation, soil, and hydrology interactions in boreal for-
ests under climate change scenarios [61, 63, 64]. More 
recently, LANDIS-II has been integrated with an eco-
nomic optimization model to explore trade-offs among 
timber production, carbon sequestration, and biodi-
versity conservation goals [65]. The PnET-Succession 
extension has been used to build carbon projections by 
integrating key climate and environmental variables [66].
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LANDCLIM is another landscape model that simulates 
the impact of climate change on vegetation structure and 
landscape-level forest dynamics [67]. This model oper-
ates at multiple spatial and temporal scales, simulating 
stand-level processes similar to conventional gap mod-
els and aggregating results to the landscape level over a 
10-year time-frame [68]. It also simulates disturbances 
similar to LANDIS II, accounting for their selective influ-
ence on individual portions of the broader cohort.

Biogeochemical process models
Ecosystem process models depict the spatial intercon-
nections between C, water, and nutrient cycles, operating 
in a range of spatial and temporal scales. They incorpo-
rate consistent ecophysiological subroutines based on 
fundamental biophysical processes to simulate net C 
storage, annual fluxes and nutrient cycles [16]. Instead 
of empirical equations derived from the statistical stand 
measurements, process-based models rely on processes 
such as radiation interception, photosynthesis, decom-
position, and C allocation to project forest growth and 
mortality over time. The key aspect of these models lies 
in their quantitative representation of ecological pro-
cesses through mathematical algorithms and structural 
equations. These models thus depict dynamics of energy, 
matter, nutrient flow and exchange, and transformation 
across ecosystems. These models often incorporate dis-
turbances and management practices as external forc-
ings on internal processes that affect ecosystem structure 
and function. Disturbances are typically represented as 
events that alter biomass, nutrient cycling, and energy 
flows [69]. Management practices are often simulated 
as modifications to vegetation structure, resource avail-
ability, or disturbance regimes. Many ecosystem process 
models include modules for fire, insect outbreaks, and 
various land management activities, allowing for the 
assessment of their impacts on carbon, water, and nutri-
ent cycles [18].

The 3PG model, short for “Physiological Principles 
Predicting Growth,” bridges the gap between conven-
tional empirical models and more complex C balance 
models. 3PG relies on a relatively small set of parameters 
and climate data inputs including solar radiation, atmos-
pheric vapor pressure deficit, precipitation, frost days per 
month, and average temperature [17]. Ecosystem pro-
ductivity is estimated through light use efficiency and 
photosynthetic active radiation coefficients [70]. 3PG is 
well suited for even-aged, homogeneous forest ecosys-
tems and has been used for a wide range of forest eco-
systems and is widely adopted by foresters [71]. Recent 
extensions of 3PG have been used to simulate future 
pine productivity in the US south under stochastic cli-
mate scenarios [72]. In contrast, PnET (Photosynthesis 

EvapoTranspiration) operates on a monthly time-step 
and is primarily designed for temperate deciduous forests 
[73]. PnET captures interrelations between photosyn-
thetic capacity and leaf nitrogen content and the depend-
ence of stomatal conductance on photosynthetic rate. 
Notably, PnET ecosystem processes differ from models 
like FOREST-BGC that used soil and atmospheric phys-
ics (e.g Penman-Monteith), simulating average monthly 
leaf area index, C, and water balances using these struc-
tural ecological relationships [73].

The Terrestrial Ecosystem Model (TEM) model esti-
mates distribution and magnitude of C, nitrogen, and 
water fluxes in terrestrial ecosystems [74]. Different 
TEM versions were incorporated into local and global 
scale modeling frameworks to examine the influences of 
climate, energy, and economic policies on land use and 
ecological processes [75]. CENTURY assesses C and 
nutrient dynamics across different ecosystems including 
forests, grasslands, agricultural, and savannas [76, 77]. 
CENTURY considers the effects of management prac-
tices such as fertilizer, irrigation, cultivation, grazing, and 
fire [78]. FOREST-BGC captures water, C, and nitrogen 
cycles comprehensively. The model requires daily climate 
data and 62 species-specific characteristics to simulate 
forest ecosystems [79]. The Running and Gower version 
uses coupled water and nitrogen cycles to dynamically 
allocate C across vegetation components. In contrast, 
Biome BGC is versatile, adaptable to various terrestrial 
biomes, and captures interactions between direct C, 
nitrogen, and water cycles [79, 80]. The model depicts 
photosynthesis as a function of climate and specific leaf 
area variables [81] and reflects respiration to account for 
C losses to the atmosphere from both the vegetation and 
below ground processes [81].

Dynamic global vegetation models
Dynamic Global Vegetation Models (DGVMs) are devel-
oped upon the same ecological principles as processes-
based models, simulating large-scale ecosystem dynamics 
at broader spatial and temporal scales accounting for 
interactions between vegetation and global environmen-
tal factors. In ecological models, the term “dynamic” 
specifically refers to their consideration of spatial and 
temporal aspects, or the influence of time on vegetation 
growth (primary production). DGVMS capture complex 
interactions within Earth System Models (ESM) [82]. 
While process based models are concentrated in mod-
eling local scale ecosystem processes using site specific 
soil and species characteristics as inputs, DGVMs typi-
cally represent aggregated vegetation categories to allow 
for the incorporation of global scale datasets of land 
use, climate variables, and other environmental factors. 
DGVMs offer a holistic framework to evaluate ecosystem 
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responses to shifting environmental inputs or land use 
change, and they can incorporate feedback mechanisms 
between vegetation and climate to assess how changes in 
vegetation influence climate patterns. DGVMs represent 
disturbances and management as processes that influence 
vegetation dynamics, biogeochemical cycles, and land-
atmosphere interactions, including natural disturbances 
such as fire, drought, and windthrow, as well as anthro-
pogenic disturbances like land-use change and forest 
management [82]. DGVMs typically simulate the effects 
of these processes on vegetation composition, structure, 
and distribution, as well as on carbon storage and fluxes 
[83]. Some advanced DGVMs also incorporate feedback 
mechanisms between disturbances, vegetation, and cli-
mate, allowing for the assessment of how changes in veg-
etation can influence climate patterns and vice versa [84]. 
While ecosystem process models focus on internal eco-
system processes and their immediate responses to dis-
turbances and management practices, DGVMs provide 
a robust framework to evaluate ecosystem responses to 
shifting environmental inputs or land use change, inte-
grating feedback mechanisms that reflect the dynamic 
interactions between vegetation and climate.

MC2 and LPJmL are both spatially explicit models that 
simulate large-scale ecological processes. MC2 uses a 
combination of statistical and mechanistic approaches 
to model ecosystem responses to global change [85] and 
employs a biogeochemistry module similar to Century 
for C allocation across vegetation components using allo-
metric relationships. MC2 also considers climate-influ-
enced variations in vegetation composition and simulates 
disturbances and post-fire succession [86]. LPJmL, the 
Lund-Potsdam-Jena Managed Land Model, also offers a 
comprehensive representation of ecological processes, 
including photosynthesis, respiration, and decomposition 
[84]. LPJmL incorporates land use changes like defor-
estation and afforestation, influencing vegetation growth 
and C allocation. ORCHIDEE (Organizing Carbon and 
Hydrology in Dynamic Ecosystems) is another promi-
nent DGVM that simulates the interactions between land 
surface and atmosphere [87]. ORCHIDEE’s multi-layer 
canopy representation enables better representation of 
light penetration, photosynthesis, and energy balance 
at different canopy levels, and ORCHIDEE can simulate 
various forestry practices such as thinning, clear-cutting, 
and selective logging [88]. JSBACH (Jena Scheme for 
Biosphere-Atmosphere Coupling in Hamburg) incor-
porates a fully coupled carbon-nitrogen cycle to facili-
tate plant growth limitations and ecosystem responses 
to changes in nitrogen availability [89]. Furthermore, 
JSBACH includes a process-based fire model (SPITFIRE) 
that simulates fire occurrence and simulations of distur-
bance regimes and their effects on vegetation dynamics 

[90]. Furthermore, JSBACH includes a process-based 
fire model (SPITFIRE) that simulates fire occurrence, 
spread, and impacts based on climate conditions, vegeta-
tion characteristics, and human activities, enabling accu-
rate simulations of disturbance regimes and their effects 
on vegetation dynamics [90]. Furthermore, JSBACH 
includes a process-based fire model (SPITFIRE) that sim-
ulates fire occurrence, spread, and impacts based on cli-
mate conditions, vegetation characteristics, and human 
activities, enabling accurate simulations of disturbance 
regimes and their effects on vegetation dynamics [90]. 
LPJmL is integrated into various Earth System Models 
to simulate broad ecosystem responses to global change 
drivers. For example, Bond-Lamberty et  al. extended 
Biome-BGC by incorporating multiple vegetation types 
and spatial heterogeneity, expanding the scope of the 
model and enabling its application to global scale projects 
[91]. Furthermore, Hidy et  al. have improved the struc-
tural component of the Biome-BGC model by including 
a multi-layer soil module and management modules for 
forests and crop land, making it applicable to contrasting 
biomes [92].

Limitations
In general, most ecological models discussed here do not 
incorporate economic or policy drivers that influence 
land use changes and management practices. Instead, 
they often treat land use changes or disturbances as 
external inputs rather than dynamic variables that evolve 
over time and across space in response to changing mar-
ket demands, relative land values, and policy incentives. 
While ecological models provide a superior represen-
tation of ecological processes compared to economic 
models, they still have limitations in capturing the full 
complexity of ecosystem C dynamics. Furthermore, some 
ecological models may not capture ecosystem C dynam-
ics. Empirical model predictions heavily rely on field data 
and remote sensed data, and thus the precision and accu-
racy of these models depend on the availability of quan-
titative data. Additionally, empirical models are typically 
developed for specific species and site conditions, mak-
ing it challenging to adapt them to diverse ecosystems.

Successional and biogeochemical models, while 
advanced in representing ecological processes and 
anthropogenic impact through management, still have 
areas for improvement. Successional models simplify 
certain aspects of forest carbon dynamics, such as inter-
annual changes in C fluxes, respiration [93], ecosystem 
response to climate change, and management interven-
tions [94]. Biogeochemical models are complex math-
ematical representations of ecosystem processes that 
require numerous parameters specific to plant functional 
types and site conditions, which can be difficult to tailor 
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to a specific context. These model types can be challeng-
ing to accurately parameterize and validate due to their 
complexity [95]. Furthermore, spatial representations in 
these models may not align perfectly with reality or fully 
capture the influence of human management interven-
tions [96]. Some models assume a uniform grid with con-
sistent plant functional types, age class structure, and site 
conditions, although ecological processes are diverse and 
heterogeneous across space [82, 97].

Economic forest carbon modeling
Empirical simulation models
Empirical models use a bottom-up approach, using col-
lected observational data to make predictions. Methods 
have been presented to simulate factors such as harvests, 
growth, and changes in forest type based on related his-
torical data. One prominent example of this method is 
from Wear and Coulston, which projects future C fluxes 
in US regions [98]. This approach links inventory data 
and empirically derived transition probabilities for dif-
ferent forest types, land use, and disturbance on future 
C stock development, similar to gap or succession mod-
els, but with more emphasis on exogenous drivers of 
land use change (e.g., market demand for timber). This 
method was also used in a 2004 study that compared 
model estimates of soil C dynamics with Finnish inven-
tory data, with a particular focus on age-class dynamics 
[99], which are crucial in understanding changes in C 
stocks. This framework also features prominently in the 
2020 Resources Planning Act Assessment [100]. Nave 
et al. also uses a simulation approach to estimate poten-
tial changes in soil C from reforestation using data from 
the International Soil Carbon Network for the US Forest 
Service (USFS) [101].

The Global Forest Model (G4M), which  is often used 
as the forestry sub-module of the multi-sector Global 
Biosphere Management Model (GLOBIOM) and can be 
applied globally on a regional or country-level scale, is 
another example of an empirical simulation model [102]. 
G4M can be used to determine optimal spatiotempo-
ral harvest decisions and depicts competition for land 
between forestry and agriculture [103]. Specifically, it 
has been used to simulate levels of reforestation, defor-
estation, and afforestation (as well as associated changes 
in carbon) given variations in economic and ecological 
parameters such as NPP, population growth, and plant-
ing costs [104]. This model has also been used to assess 
changes in forest productivity under a range of climate 
change scenarios [105].

A limitation of simulation models is data uncer-
tainty, as discussed in Nave et  al. [101]. Thürig et  al. 
further highlights this point by evaluating the accuracy 
of an existing empirical tree model, asserting that these 

models can only be as good as the data it uses, suggest-
ing improved data or improvements to the framework as 
a whole [106]. A final limitation of this approach is the 
exclusion of market feedback mechanisms, where price 
changes affect management and harvest patterns, poten-
tially shifting spatiotemporal distribution of harvests 
and management intensity and, in return, forest C fluxes 
[107]. Given the interactions between forest management 
and markets described in [107], it is important to account 
for these key market feedbacks when projecting future C 
fluxes,but simulation approaches hold these interactions 
fixed or exogenously defined.

Empirical structural models
Empirical structural models can project forest C changes 
as an outcome of market, harvest, and land use changes. 
This type of model also (typically) bases growth and C 
estimates on forest inventory data, but with the addition 
of market parameters (i.e., prices, costs, supply/demand 
elasticities). This approach explicitly recognizes the rela-
tionships between markets for pulpwood and sawtimber, 
demands for non-forest land, and implications of market 
or policy changes on land use/management decisions.

One example is the Sub-Regional Timber Supply Model 
(SRTS), presented first in Abt et  al. [108]. SRTS is an 
empirically validated, regionally applicable, partial equi-
librium model that has been used to assess market and 
resource changes in the southern U.S. forest sector. SRTS 
represents the intersection between markets and forests, 
including factors such as prices, forest productivity, and 
economically driven decisions around spatial harvest pat-
terns and wood supply in the southern U.S. Recent ver-
sions of SRTS such as Abt et  al. which uses land rents 
and population data to assess how the bioenergy market 
could impact the type of forests to be managed [109]. 
Henderson et  al. models the response to C fertilization 
on pine forests for biological and market systems under 
different Representative Concentration Pathways (RCPs), 
linking to forest productivity projections from the 3PG 
process model [110]. Henderson et al. simulates potential 
near- and long-term market and C implications of Hur-
ricane Michael [111]. SRTS has also been used to model 
the effects of forest C policy, with Galik et  al. estimat-
ing the potential regional impact of bioenergy policy on 
the environment and the economy [112]. SRTS has been 
applied to simulate the implications of hypothetical C 
offset programs on Mississippi pine pulpwood mar-
kets, addressing additionality concerns of harvest defer-
ral markets [113]. Dhungel et al. use an extension of the 
SRTS framework to the Central Hardwoods Region to 
project market tipping points for white oak sustainabil-
ity concerns [114]. FORMIT-M (created to project FOR-
est management strategies to enhance the MITigation 
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potential of European forests) is another example of a 
structural forest sector model which includes 10 Euro-
pean countries. This model uses observational data and 
structural equations representing ecological systems to 
estimate future harvest volume under different manage-
ment and silvicultural regimes [115].

Though these models allow for some market consid-
erations, others often remain exogenous, including land 
use change (in some contexts), C policy, climate change, 
and global trade. For example, Hashida and Lewis mod-
els how landowners adapt their management decisions 
related to exogenous changes in land use, carbon pric-
ing, and observable climate factors [116]. Further, these 
models tend to be region-specific, which although useful 
in smaller scale assessments, provides limited insight into 
the national- or global-scale C impacts of market, policy, 
or climate changes.

Recursive partial equilibrium models
Partial equilibrium (PE) frameworks internalize market 
forces in the forest sector, and can be designed to simu-
late management responses to market changes endog-
enously. Recursive PE models generate market and 
resource consumption output for a single (static) period, 
which could represent a single year or multiple years sim-
ulated consecutively. The Global Biosphere Management 
Model (GLOBIOM) is a global model designed to address 
land use-related topics like climate change, deforesta-
tion, bioenergy policy, and agricultural policy [117]. This 
recursive partial equilibrium model allows for inclusion 
of climate mitigation impacts and socioeconomic devel-
opment [118], allowing researchers to infer about poten-
tial futures to address prominent policy questions. For 
example, Lauri et al.(2019) uses GLOBIOM to assess the 
outcomes of different SSP-RCP scenarios on global bio-
mass harvest and forest area [119]. Böttcher et al. relies 
heavily on GLOBIOM to project the future of the C sink 
in European Union Forests given changes in bioenergy 
policies [120, 121]. Similarly, Forsell et  al. uses GLO-
BIOM to simulate market and C impacts of different sce-
narios of material substitution possibilities. GLOBIOM 
forest C projections are also summarized in a recently 
published global forest model inter-comparison [7]. 
Though this model and its associated studies have pro-
gressed the field immensely, there is still minimal ability 
to capture basic climate dynamics, with few advances in 
this aspect since an early example of this model type by 
Joyce et al. [122].

Another widely used global model is the Global Forest 
Product Model (GFPM), which simulates forest prod-
uct supply and markets in different countries and how 
those countries interact through international trade. 
Including substantial detail on bilateral trade flows and 

trade-oriented policies is a distinctive feature of GFPM 
and the more recently developed FOROM models [123], 
since many of the commonly used models of forest C 
ignore the details global trade networks for forest prod-
ucts. Buongiorno (2003) describes potential applications 
of GFPM, including projections of timber production, 
consumption, trade, and prices [124]. The model can 
also support policy analysis as it relates to global forests 
and restrictions to global trade. The United States For-
est Product Model (USFPM) is a derivation of the GFPM, 
which focuses on markets within the US. Nepal et  al. 
uses these frameworks to project C sequestration and 
wood energy consumption in the US and global timber 
markets [125]. GFPM/ USFPM can also be used to assess 
economic and C impacts of different policy scenarios. 
For example, a 2013 paper assessed C, costs, and leak-
age outcomes of different C pricing schemes in the US 
[126]. Ince et al. similarly assesses future outcomes given 
different policies aimed at expanding wood energy con-
sumption [127]. A more recent variant of these mod-
els is the FOrest Resource Outlook Model (FOROM), 
which was used in the 2020 Forest Service RPA assess-
ment. This model optimizes consumer and producer sur-
plus, accounting for factors such as transportation costs, 
resource availability, and market equilibrium constraints 
regarding prices, consumption, and production. This ver-
sion also incorporates NPP responses to climate change 
and divides the US into 6 sub-regions, rather than a sin-
gle region as in the GFPM [123]. A 2023 application of 
this model focuses on interactions between international 
forest product trade flows and market outcomes in the 
Southern US forest sector [128].

More recent PE frameworks account for spatial 
dependencies and data heterogeneity to improve future 
carbon projections and to linking local resource manage-
ment decisions and national market systems. The Land 
Use and Resource Allocation Model (LURA) merges 
spatially explicit data on U.S. forest inventory, land use, 
and timber markets. Latta et  al. highlights the relation-
ship between forest plots (supply) and mills (demand), 
and discusses the importance of accounting for spatial 
dependencies when projecting forest C changes at differ-
ent spatial scales [129]. Xu et al. links LURA with LCA to 
estimate the lifecycle C emissions from woody biomass 
in biomass electricity systems [130]. Wade et  al. tested 
whether models that aggregate forest inventory data spa-
tially or by activity sets introduce potential bias in forest 
C projections, with results supporting the use of spatially 
explicit empirical and partial equilibrium models [131]. 
The French Forest Sector Model (FFSM) is another local-
ized, static PE model which focuses on the growing forest 
sector in France [132]. The two components of this model 
combine a representation of economic factors such as 
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consumer preferences, supply-side changes, and wood 
product usage with a component of forest stock. Caurla 
et  al. compares the impacts of one policy that provides 
payment for C sequestration and another that focuses 
on simulating fuelwood demand [133]. Similarly, Lecocq 
et al. compares payments for C sequestration with fossil 
fuel substitution [134]. Riviere and Caurla adds a spatial 
component to the FFSM and found high variation in the 
impacts of timber investment trends on forest manage-
ment [135]. Such results can help support the design and 
implementation of effective forest C policy instruments.

Although static PE models offer key advantages in 
modeling forest C futures, there are limitations to this 
type of model. First, the output of these models typi-
cally exists at an annual or multi-year time step, limiting 
analysis of longer-term phenomena like climate change 
in which capturing time preferences and intertemporal 
resource management can be critical. Second, there is 
an assumption of myopic decision making, meaning that 
stakeholders lack insight into future market factors. This 
assumption is inconsistent with the reality of forest man-
agement, where expectations of future markets can heav-
ily influence near-term decision making.

Dynamic intertemporal partial equilibrium models
In an economic context, a dynamic model refers spe-
cifically to the inclusion of a behavioral assumption that 
individuals are forward-thinking in decision making. In 
other words, a forestland owner in a dynamic represen-
tation considers likely changes in markets, policy, and 
climate. Static PE models do not account for dynamic 
decision-making, including management choices made 
in anticipation of future costs and benefits. Dynamic 
(intertemporal) optimization PE models differ from static 
PE models in the assumption of perfect foresight which 
allows a model to reflect how future expectations inter-
act with changes in behavior (e.g., forest management 
changes made in anticipation of longer-term policy, mar-
ket, or environmental change factors). Like recursive 
PE frameworks, intertemporal market models are price 
endogenous, though equilibrium conditions are deter-
mined for all time periods simultaneously as intertempo-
ral economic welfare is maximized.

The Global Timber Model (GTM) has been used exten-
sively to project global and regional C stock changes 
under different socioeconomic and policy conditions [7, 
107, 136–138]. GTM is unique in that it also serves as 
an example of how economic and ecological models can 
be paired for analysis of climate impacts on productivity, 
markets, land use, and markets. One component of GTM 
is the advancement of empirical structural Timber Supply 
Model (TSM), which addresses the relationships between 
market parameters and was one of the earliest models 

incorporating a distinction between pulpwood and saw-
logs, recognizing the connection between the supply of 
each product [139]. TSM (and now GTM) uses inventory 
data by age class, land type, and species to identify the 
optimal time of harvest given trends or shocks in mar-
ket prices. Recent examples include GTM studies that 
incorporate productivity projections under different cli-
mate scenarios using both the MC2 model [140] and the 
LPJmL model [141, 142]. GTM studies incorporate pro-
jected changes in ecosystem productivity and mortality 
under different climate scenarios, reflecting a net change 
in productivity over time. CO2 fertilization often results 
in higher net growth and productivity over time, a find-
ing that is supported by global-scale ecological modeling 
and recent empirical work in the U.S. [143].

Another frequently used example is the US-focused 
Forestry and Agricultural Sector Optimization Model 
with Greenhouse Gasses (FASOMGHG), which presents 
a multi-sector approach for simulating long-term market, 
management, and environmental outcomes under differ-
ent scenarios [144]. FASOMGHG has been used to ana-
lyze how climate policy incentives, showing that GHG 
abatement incentives would benefit agricultural produc-
ers [145, 146]. FASOMGHG’s ability to capture cross-
sector interactions and resource competition can benefit 
C modeling. Jones et al. uses a recently updated version 
of the model to project forest and agricultural outcomes 
using the SSP/RCP scenarios to decompose the effect of 
their components on long-term GHG emissions and C 
sequestration changes in forestry and agricultural sys-
tems, exploiting the model’s representation of cross-sec-
tor market relationships [147]. Wade et  al (2022) builds 
on Jones (2019) to represent all SSP scenarios and GHG 
mitigation price incentives [10]. Wade et  al. illustrates 
how baseline components (i.e.,market demand, urbani-
zation, and productivity) in forestry and agriculture can 
shift the opportunity costs of mitigation investments. 
FASOMGHG has also been calibrated to biophysical 
projections of crop and forest productivity changes from 
the DGVM MC2 and various crop models (e.g., Fei et al. 
[148]; Baker et al. [149]).

Some examples of dynamic PE models are limited to a 
single nation or region. NorFor is a forest sector model 
for Norway and was developed as an integrated model 
of forestry and industry, creating projections for the for-
est sector, assessing impacts of political/ economic fac-
tors, and tracking C flows [150]. The perfect foresight 
assumption is used to estimate the equilibrium value of 
consumer and producer surplus, but also optimizes for 
climate benefits like GHG reduction. NorFor was used 
to assess the impact of perfect foresight, finding a faster 
recovery to system shocks in a world with perfect fore-
sight [151]. This study highlights how the treatment of 
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time dynamics can impact projected outcome of future 
scenarios or policy incentives. Sjølie et al. uses NorFor to 
determine forest sector costs and benefits from climate 
mitigation strategies [152]. In one study, NorFor is com-
pared to a dynamic recursive model in the same region, 
where they were applied using the same data and compa-
rable assumptions [153]. Through this analysis, they find 
large differences in market shifts and elasticities between 
models. However, they argue that neither optimization 
assumption (myopic vs. perfect foresight) is “better” 
than the other- they are shown to have strengths and 
weaknesses that depend on the application and desired 
analysis.

Limitations
The effectiveness of economic models at projecting forest 
C stocks and fluxes is limited, with some model attributes 
being ideal in some research applications while provid-
ing little insight in other contexts. These models vary in 
temporal and spatial scales, but typically represent larger 
spatial scales. GTM is useful in global assessment of tim-
ber markets, but may not capture the nuance of regional 
forest systems [154]. Another difference between these 
modeling frameworks is the way in which different C 
pools are accounted for. LURA includes C pools involved 
in land use change, such as emissions from deforesta-
tion or storage from forest growth [129]. However, Nepal 
et al. applies the GFPM to estimate C storage under dif-
ferent wood fuel scenarios, focusing on stand C and 
wood product C [129]. Economic models are also lim-
ited in how they represent (or overlook) C and nutrient 
cycling at smaller spatial scales. While most economic 
models include estimates of AG C pool changes, very 
few account for heterotrophic respiration or C dynamics 
in forest soils [101], which can be a critical component 
of forest carbon dynamic in peatlands and other ecosys-
tems. A major barrier to improving the representation 
of these vital ecological processes is based in the com-
plexity of the interaction between the many geophysical 
processes, which complicates large-scale GHG inventory 
efforts [155]. Another barrier involves differences in tem-
poral scope, with economic models representing costs 
and benefits of management interventions at annual or 
multi-year scale, while some process models are defined 
at sub-annual, sometimes daily increments. Yet another 
challenge is the motivation of discipline-specific stud-
ies, as ecologists and economists are often motivated to 
better understand different drivers of the same system. 
Accounting for soil emissions post harvest or disturbance 
could affect optimal rotation timing and management 
decisions, but rarely are these emissions accounted for 
in regional or global economic framework (in part due 
to the uncertainties associated with emissions from  soil 

respiration). This shortcoming elucidates one disconnect 
between ecological and economic projections, despite 
them being heavily reliant on similar data inputs. Simi-
larly, some studies include wood product carbon pools 
[7, 126, 156], while others ignore this component, focus-
ing instead on land carbon fluxes [129]. Studies that do 
include wood product pools often assume little-to-no 
market interactions, which is particularly important 
when considering substitution of emission-intensive 
building materials (i.e., steel, concrete) [157]. This is, in 
part, due to the general absence of data on substitution 
elasticities or other assumptions needed to capture cross-
market interactions, which require econometric analysis 
to estimate that is often not possible for new and emerg-
ing products like mass timber that can be used to substi-
tute for emissions intensive steel and concrete [158, 159].

More recent modeling efforts include improved rep-
resentation future scenario narratives, including align-
ment across SSPs and RCPs. While these narratives and 
scenario assumptions are useful for academic modeling 
exercises, there is work to be done to improve these 
frameworks for practitioners implementing management 
strategies or policies. The last, major limitation of these 
frameworks is how forest C projections from ecological 
process models are sometimes used to calibrate growth 
and yield assumptions for different forest types. This 
approach can create a misalignment between ecological 
projections, which are driven by their own assumptions 
of land use change and disturbance patterns (which ulti-
mately affect NPP/NEP projections), and economic mod-
els, where land use and management changes are often 
endogenous.

Convergence approach to forest carbon modeling
Capturing critical feedback loops governing forest carbon 
fluxes
Despite the utility of existing forest C models, there is 
a clear disconnect between models that are designed to 
account for the details of economic and ecological pro-
cesses in the existing literature, even in studies that link 
these frameworks through input–output relationships. 
In practice, there are interactions between economic 
and ecological systems that are vital for better captur-
ing the full suite of forest C dynamics to allow for more 
reliant modeling and application. Economic models take 
a landscape-level perspective, but often represent eco-
logical factors as exogenous forces and over-simplify 
environmental conditions that impact the elements they 
incorporate endogenously, e.g., management decisions 
as a function of land quality or site class determination. 
Land quality is often fixed and exogenous in economic 
models, but forest productivity can be affected by nutri-
ent cycling, soil microbial processes, and disturbance 
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represented in ecological frameworks. Figure 1 presents 
hypothetical NPP curves for a representative forest stand 
over time to demonstrate how variations in ecologi-
cal and disturbance factors impact the C sink in a more 
nuanced way at the ecosystem scale. To further illustrate 
this disconnect at aggregated market scales, Fig.  2 rep-
resents changes in C storage from important economic 
factors in hypothetical scenarios that may not reflect 
ecological complexities at smaller sub-scales. In the sec-
tions below we outline key ecological and economic fac-
tors that have key influence over forest C projections at 
both local and aggregated scales, as well as important 
feedback loops that currently do not exist between eco-
logical and economic approaches.We note that different 

policies or programs may have goals that go beyond AG 
(live-tree) carbon, thus limiting model selection to tools 
with an enhanced representation of carbon dynamics 
in all carbon pools. As policy or programmatic efforts 
evolve, forest carbon modeling tools will need to advance 
as well to match the level of insight or detail required of 
the end consumer of the model projections. For exam-
ple, national accounting and projections to support gov-
ernment programs will require more comprehensive 
accounting, while some project-scale methods applied to 
voluntary C offset projects may require less detail (e.g., 
carbon fluxes in AG and harvested wood product pools).

Ecological models vary in their treatment of these 
dynamics, with each model displaying distinct 

Fig. 1  Illustrates the dynamics of NPP and Rh in forest ecosystems influenced by various disturbances compared to undisturbed conditions, 
projected over stand age development. Forest age class structure plays a vital role in carbon fluxes and storage over time [160–162], and this figure 
showcases the diverging trajectories of NPP and Rh under different disturbance regimes. Harvesting, wildfires, drought, pests, and deforestation 
all have significant effects on forest mortality, structure, and functionality. Harvesting, whether selective or clear-cut, results in a loss of biomass 
and a subsequent decrease in NPP [163]. Additionally, the soil disturbances and logging residues significantly increase Rh. It is essential to note 
that our analysis assumes post-harvest replantation [164]. Wildfires have a similar impact on NPP and Rh [165], but wildfires often result 
in longer recovery times due to their more extensive damage and impact on soil, while harvesting can have a quicker recovery when managed 
with replantation efforts. Drought affects forest ecosystems in two distinct ways- first, it leads to drought-induced mortality and stresses, resulting 
in a notably lower peak value of NPP compared to undisturbed forests [166]. Additionally, drought influences soil moisture and soil temperature 
[167, 168], especially in combination with high atmospheric temperatures. While drought-induced mortality has a significant impact, it can 
also have a counter-intuitive minor effect on C fluxes through reduced competition for resources like water and nutrients in the ecosystem. 
Pest and pathogen disturbances are complex, as their effects vary depending on forest species, pest type, and ecosystem response [169]. 
These disturbances can range from altering forest species composition to organically reducing productivity in defense against diseases [170]. 
Deforestation can lead to a complete loss of NPP over time and in some contexts an increase in soil respiration [171]
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characteristics. Empirical models primarily rely on his-
torical observational data to predict growth and yield, 
estimating NPP as a variable influenced by tree growth. 
Their treatment of Rh tends to remain relatively constant 
and disturbances are primarily characterized by factors 
like mortality rates. Succession models simulate forest 
succession with an emphasis on internal disturbances, 
and ecological processes being driven by environmental 
variables. These models integrate NPP and Rh factors by 
considering them as integral components of ecosystem 
dynamics. NPP is often linked to tree growth and com-
petition, while Rh reflects the decomposition of organic 
matter in response to environmental conditions. Bio-
geochemical process-based models study extensively the 
physiological processes influencing C, water, and nutrient 
cycles in ecosystems. Many of these complex processes 
are not adequately captured in economic models that are 
aggregated over space and time. Proper decomposition of 
ecological processes on long-term C dynamics at local or 
global ecosystem scales facilitates analysis of long-term 

environmental change and can support identification 
of hot-spots for ecosystem protection or management 
interventions to improve system-wide forest C outcomes. 
On the other hand, economic models are ideal for assess-
ing longer-term forest C outcomes from changes in forest 
management and land use driven by shifting policy and 
socioeconomic conditions. Although there are trade-
offs in accuracy and accounting for ecological processes, 
there are aspects of forest C that are better captured in 
economic models. Specifically, forest management and 
land use respond to market signals in economic models, 
making forest C storage endogenous to drivers such as 
forest product demand, land use preferences, and policy 
incentives like C payments [7, 146, 172]. Additionally, 
these models endogenize disturbance-related manage-
ment decisions, such as shorter rotations to reduce fire 
risk or avoid emissions associated with harvests and soil 
carbon losses. Figure  2 shows hypothetical pathways of 
the C sink for different potential shocks to the broader 
economic system. In some models, these stock changes 
also represent off-site sequestration in wood product 
pools that also accumulate over time, showing a positive 
increase in total C storage, despite forest C disturbances, 
growth, and land use change.

Forest carbon modeling limitations
This study identifies several broad limitations in stud-
ies that have integrated economic and ecological models 
through data sharing (input–output) routines:

•	 First, there is a clear disconnect between the spatial 
and temporal perspective used by each discipline and 
the contexts in which they are applicable. Recent evo-
lution of process models allows for spatially explicit 
simulations of ecosystem productivity and respon-
siveness to alternative climate and environmental 
change assumptions. Computational advances, cou-
pled with the proliferation of publicly available spatial 
datasets have pushed ecological modeling to produce 
spatially explicit projections of ecosystem changes. 
Conversely, most economic models operate at aggre-
gated regional scales, in part due to limitations in the 
availability of economic data (e.g., price responses) at 
finer spatial resolution and the fact that these mod-
els rely on optimization approaches, not simulation 
(where the former typically requires more computa-
tional time as the dimensionality of a system grows). 
Further, there is often a mismatch in temporal scope, 
with economic models typically representing larger 
discrete time steps (annual or multi-year) and time 
frames (50–100+ years).

•	 Second, there are structural inconsistencies between 
the modeling frameworks driven by discipline-

Fig. 2  Changes in forest C accumulation the forest carbon sink 
at a landscape level for changes in economic and management 
variables, representing the cumulative change in the C sink 
across a range of individual forest parcels in a landscape, which can 
be driven by markets, natural disturbance, or external economic 
forces including market conditions in the agricultural sector [144, 
145, 147]. Trends of land degradation, increased opportunity costs 
of forest losses, and increased agricultural productivity have led 
to establishment of forests managed for timber production in some 
areas, increasing potential for C storage (a shift to C1 ). Similar levels 
of investment could occur through C oriented policies that allocate 
financial resources to tree planting programs and improved forest 
management [9]. Alternatively, growing populations and higher 
demand for food products or urban development could increase 
incentives to clear forests for alternative land uses, diminishing 
the carbon sink (Shift to C2 ). Large regional disturbances 
(hurricanes, sustained wildfires) could also decrease C stock 
accumulation over time in the absence of policy incentives to make 
up for diminished regional NPP
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specific goals, as well as the assumptions created to 
achieve these goals. Ecological process models seek 
to understand interactions between physical factors 
(climate inputs, nutrient cycling, soil biota, distur-
bances) and how these influence forest productivity, 
assuming management regimes and land use patterns 
are fixed. Economic models project forest resource 
utilization, markets, and land use/management under 
different drivers of global change, assuming static 
values for ecological factors such as temperature, 
species, soil dynamics and disturbances. Although 
making these assumptions has been useful in study-
ing the dynamics within each discipline, it hinders 
the accuracy of the models by failing to incorporate 
the multiple complexities between forest C systems.

•	 Third, there is a lack of convergence between eco-
nomic and ecological systems. Model integration 
through output/input sharing will not achieve con-
vergence between economic and ecological systems 
models if there is not an iterative approach for cap-
turing key feedback loops. Previous climate impact 
assessments at global and regional scales have used 
process model simulations of NPP changes to param-
eterize forest growth and yield assumptions in eco-
nomic models (e.g., Favero et al. 2017 [172]). In these 
studies, outputs from ecological model simulations 
serve as inputs to economic models. While this 
may be ideal for establishing initial conditions and 
growth/yield parameters for economic models, it fails 
to capture inter-dependencies between local resource 
management decisions and nutrient/water cycling 
dynamics that alter productivity and species com-
petition over time. A potential shortcoming of this 
unidirectional flow of information is that it misses 
key interactions between ecological productivity and 
management of forest resources. That is, productiv-
ity and land use in ecological model simulations likely 
miss key market drivers and the influence of manage-
ment decisions on productivity. If the process flow 
were to work in the opposite direction,  calibrating 
ecological simulations to economic model outputs 
and management responses to market changes, then 
process models would be constrained to manage-
ment choices that may not reflect ecological com-
plexity.

A roadmap for ecological and economic modeling 
convergence for improved forest carbon projections
There is a need to address the limitations and disciplinary 
bias of ecological and economic models that run in iso-
lation or are coupled via soft-linkages (data sharing). We 
propose a convergence approach to forest C modeling 

where, in this example, convergence refers to both com-
putational convergence across systems frameworks, as 
well disciplinary convergence around forest C modeling, 
integrating disciplinary perspectives from economics, 
ecology, and other disciplines to improve forest C pro-
jections. Convergence research methods can help break 
down disciplinary barriers and support new methodo-
logical advancement and research paradigms. There are 
several recent and emerging applications of convergence 
research approaches in other contexts, including inte-
grated modeling coupling human, natural, technical, and 
biological systems (see [173] for more a detailed explana-
tion of convergence research).

Convergence can occur by first recognizing disparate 
disciplinary perspectives on what drives an outcome 
of interest (forest C stock changes) and then exploit-
ing these perspectives to improve our understanding of 
these fundamental drivers of forest C changes. Ecologists 
should strive to enhance ecological model frameworks 
by incorporating markets, management, and land use 
change components. Ecological models can be improved 
by linking with economic models that account for the 
influence of external factors that drive land use and man-
agement change, such as market signals and policy incen-
tives. Ecologists should also recognize the important role 
of market dynamics in driving forest investment and the 
allocation of C to harvested wood product pools, eco-
nomic logic to better guide baseline and counterfactual 
scenario development in ecological tools. Economists, 
meanwhile, should better incorporate water and nutrient 
cycling processes, their interactions with atmospheric 
CO2 fertilization, and residual soil emissions from forest 
disturbance and harvests into their models. Economic 
frameworks would also benefit from improved spatial 
specificity, either by moving to a smaller spatial unit of 
analysis or, in the case of computational constraints, 
through improved spatial down-scaling of model out-
puts. Alternatively, economic models could solve for 
supply-side dynamics with more spatially detailed supply 
data (e.g., prices, elasticities).

How scenarios are developed and applied in ecological 
and economic contexts could also benefit from improved 
alignment. Economic modeling either develops pol-
icy scenarios relative to a single model baseline [9], or 
through scenarios with different assumptions on future 
socioeconomic, environmental, and policy conditions 
[7]. Ecological modeling literature captures long-term 
projected changes in climate, disturbance factors, and 
environmental conditions, but typically includes a coarse 
(and fully exogenous) representation of socioeconomic 
developments. While recent literature acknowledges the 
importance of counterfactual scenarios in quantifying 
mitigation benefits of forests [174], ecological literature 
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still does not fully reflect the role that markets, incen-
tives, and forest management play in driving forest C 
fluxes. Further, recent studies misapply the logic of coun-
terfactual scenarios common in economics in a way that 
inflates the projected emissions of management and 
wood harvests [175].

Convergence can also occur through tighter integra-
tion of systems models. Oerther et  al. links research on 
food and water systems to better understand the com-
bined impact on child health for improved environmen-
tal health practice and policy [176]. Yang et al. focuses on 
water networks with multiple regeneration units, creat-
ing a framework that adjusts the concentration and flow 
rates of regenerated streams until their different itera-
tions converge [4]. In the context of molecular biology, 
Gadkar et al. designed an iterative approach to model the 
identification of biological networks, discussing the need 
for the integration of experimental techniques and com-
putational research [177].

Forest C modeling could also benefit from multi-model 
convergence approaches, as illustrated in the conceptual 
diagram below (Figure  3). Daigneault et  al. provides a 
recent example of how ecological process and economic 
models can be integrated with widely used ecological 
model outputs [65]. An alternative to unidirectional data 
sharing (NPP projections to forest growth/yield inputs) 
could be an iterative process as described below:

•	 Start with ecological projections of NPP by for-
est type and then incorporate this information into 
economic models to reflect scenario-specific forest 
growth and yield assumptions, disaggregating spa-
tially and forest type to the extent possible (following 
the standing approach).

•	 Develop economic projections and save key variable 
outputs such as total C stocks, land area by land use 
(including by forest type, time, and forest harvest lev-
els by forest type and region).

•	 Pass projections of land use, forest type changes and 
harvests back to the ecological framework to serve as 
exogenous inputs for additional simulations.

•	 Repeat this process until convergence in forest C 
stock evolution has been achieved across the multi-
ple frameworks.

This iterative process captures inter-dependencies 
between ecological and economic systems, while allow-
ing each framework to play to its strengths without full 
reconciliation of spatial and temporal scale differences. 
This process of iteration can be repeated in a relatively 
efficient manner, particularly given the increasing com-
putational abilities of the technology and programs 

used to execute these models. Once the results of 
these models reach a desired level of convergence, we 
are left with projections that simultaneously consider 
economic and ecological factors that impact the for-
est C dynamics. These estimates can, in turn, be used 
to develop effective forest C policies and programs 
in areas with the greatest ecological and economic 
C sequestration potential (at the lowest opportunity 
costs). An alternative would be to create iterative loops 
for individual time steps, using heuristics that spatially 
interpolate economic management and land use deci-
sions to parameterize short term ecological projections 
in DGVMs or other process models.

It is important to note that, while the focus of this 
manuscript is on improved convergence between eco-
logical and economic systems, true convergence on for-
est carbon modeling will require contributions from 
other disciplines, including climate and atmospheric 
sciences, forest science and engineering, and Earth 
systems science (as a few examples). Paradigm shifts 
in forest carbon research and modeling require a wide 
range of perspectives and analytical methods that ulti-
mately go beyond economics and ecology.

Fig. 3  This figure represents key feedback loops and data elements 
that could be better calibrated between economic and ecological 
systems models of forest carbon, although the approach can be 
applied to the multitude of potential feedback loops between these 
systems. Economic models can project changes in land use 
over time, which certainly impact ecosystem-level systems, such 
as nutrient cycling, but economic models run in isolation ignore this 
feedback loop between soil processes that affect forest productivity 
and emissions, which could bias the choice of location, forest 
type, and extent of management changes projected by economic 
simulations. Iterative feedback loops between ecological 
and economic systems could be developed by establishing 
convergence criteria for a key variable of interest (e.g., total C stocks 
over time)
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Conclusions
This paper performs a detailed review of literature to 
provide a concise portrayal of the state of modeling for-
est C aiming to highlight their benefits and provide evi-
dence of a deficiency of interdisciplinary approaches in 
the existing literature. We first classify forest C models 
into two broad categories- economic models, which typi-
cally take a more landscape approach that links markets 
and management outcomes to use in policy applica-
tion, and ecological models, which use a more technical 
approach to provide a more detailed and comprehensive 
account of ecosystem-level processes. Ecological models 
are partitioned into four subcategories- empirical, suc-
cession, landscape, and biogeochemical process models. 
We similarly name four subcategories of economic mod-
els- empirical simulation, empirical structural, recursive 
dynamic, and partial equilibrium dynamic. We discuss 
each subcategory, provide examples of different model 
types and their applications, and assert their limitations. 
Our findings elucidate how differences in scale, assump-
tions, and applications of models, both within and across 
disciplines, impact the ability of models to accurately 
portray the dynamics of forest C.

A salient limitation of economic models is their 
assumptions related to environmental processes, result-
ing in a lacking ability to account for ecosystem-level 
changes that are highly relevant to C projections. As 
the climate continues to change in ways that are largely 
unpredictable, the relevance of ecosystem systems to 
predicting the future forest C sink will continue to grow. 
Most of these models rely on static assumptions about 
temperature, water availability, land nutrients, and spe-
cies adaptation to changing climates. Our discussion of 
ecological modeling of forest C shows that these factors 
are highly dynamic and have important interactions not 
captured by economic approaches. Meanwhile, ecologi-
cal models do not account for management and socio-
economic drivers of forest C changes. Each type of model 
serves an important purpose in the research on forest 
C and has improved our understanding of complex ter-
restrial C system dynamics. However, the disconnect 
between economic and ecological models leaves much 
to be desired, particularly when using C projections to 
inform decision making and resource allocation.

This study proposes an alternative approach to forest C 
modeling that draws on convergence research and com-
puting, allowing ecological and economic tools to com-
municate with each other. The core idea is to use outputs 
from one model type as inputs for the other, then reincor-
porate the new set of outputs into the inputs of the origi-
nal model. This iterative process would continue until 
the models reach a desired level of convergence, allowing 
them to fully incorporate both economic and ecological 

processes. This approach will significantly reduce the 
level of separation between the economic and ecological 
disciples in their approach to modeling environmental 
and socioeconomic systems. Further, this convergence of 
models will significantly improve the accuracy and reli-
ability of the projections generated by forest C models. 
These models are used to inform climate policy crea-
tion, execution, and analysis, even when run in isolation. 
There is a need for improved coupled modeling to inform 
policymakers, requiring nuanced assessments of forest C 
storage and sequestration over space, time, C pool, and 
forest type. Conclusions can be drawn and decisions can 
be made based on future environmental stresses and 
changes within forest systems based on ecological for-
est C modeling. Landowners also, directly or indirectly, 
use information from these models to make management 
and silvicultural decisions. But a lack of information on 
potential impacts of factors like temperature, pests, and 
disturbance risk can result in non-optimal, and poten-
tially detrimental, outcomes for individual forest manag-
ers or jurisdictional program managers.

There is growing awareness among global policy-
makers, NGOs, and individuals of the high C mitiga-
tion potential that forests hold. However, there is much 
uncertainty about the extent to which or how this poten-
tial can be harnessed. Although we cannot fully eliminate 
this uncertainty, there are ways to improve the accuracy 
of forest C projections for more effective policy design. 
Existing forest C models have played a crucial role in 
highlighting the role of forests in efforts to curb C emis-
sions, but as public interest and investment in these 
methods grows, so must the complexity of models going 
forward. Using approaches aimed at convergence and 
integration of the economic and ecological systems that 
impact forest C, future modeling efforts can provide a 
more reliable and comprehensive range of forest C pro-
jections and ultimately to maximize the C storage poten-
tial of global forests with growing demands for food and 
fiber and under a rapidly changing climate.
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