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Abstract 

In this paper, three novel grey breakpoint prediction models are proposed based on calculating the development 
coefficient and grey action of grey prediction models after fuzzy breakpoints, unifying the calculation methods 
for parameter estimation and the relevant time-response equations, and using the particle swarm optimisation algo-
rithm to optimise the two-stage background values. Finally, the novel grey breakpoint prediction models are used 
to simulate and forecast the  CO2 emissions in BRICS countries. We can see that by setting time breakpoints and fuzzy 
breakpoint intervals, the novel methods successfully detect abrupt changes in the system and achieve accurate pre-
dictions, thus improving the accuracy and applicability of the grey model. The new grey breakpoint prediction mod-
els demonstrate better estimation in all cases in  CO2 emissions forecasting. The projections show that between 2022 
and 2025,  CO2 emissions in Brazil and South Africa will decrease each year, while  CO2 emissions in China, Russia 
and India will increase each year, but the upwards trend in India shows signs of slowing.

Keywords Grey breakpoint prediction model, Particle swarm optimisation, CO2 emissions, Time response function

Introduction
Global climate change has emerged as one of the most 
formidable challenges in the twenty-first century, with 
CO₂ emissions, as the primary source of greenhouse 
gases, directly impacting the sustainable development 
and climate governance effectiveness of all nations. As 
representatives of emerging economies, BRICS coun-
tries have witnessed a continuous increase in energy 
consumption and CO₂ emissions amidst rapid industrial-
ization and urbanization processes [1]. According to data 
from the IEA, BRICS countries account for over 40% of 
the global total CO₂ emissions, and their emission reduc-
tion pathways are decisive for achieving the temperature 
control goals set out in the Paris Agreement. With the 
sustained and rapid economic growth and accelerated 

urbanization of BRICS countries, energy demand con-
tinues to rise, and industrial structures are continuously 
upgraded, leading to an upward trend in CO₂ emissions. 
However, significant disparities exist among BRICS coun-
tries in terms of economic development levels, energy 
structures, industrial structures, and emission reduc-
tion technologies. This heterogeneity renders the driv-
ing factors and variation patterns of their CO₂ emissions 
complex and diverse, thereby increasing the difficulty of 
accurate prediction [2].

Currently, there are a variety of methods that have been 
applied to obtain carbon emission projections, mainly 
including the following types. First, macroeconomic sys-
tem models treat an energy system as a sector of the mac-
roeconomic system, and as economic growth impacts 
this sector, macroeconomic changes will lead to changes 
in the supply and demand of the energy system, so as to 
measure the interaction between the energy system and 
other systems and the impacts of emission reduction 
policies on the national macro-economy, mainly includ-
ing the input–output models and (computable gen-
eral equilibrium) CGE models [3–5]. Second, statistical 
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analysis models, which consider the effects of economic 
development, resource endowments, low-carbon tech-
nology, environmental regulations and other factors on 
 CO2 emissions and decompose these factors before mak-
ing predictions, such as the impact-population-affluence-
technology (IPAT) [6], stochastic impacts by regression 
on population, affluence, and technology (STIRPAT) [7], 
long-range energy alternatives planning system (LEAP) 
[8], multiple regression analysis synthesis methods [9], 
and other models are used. Third, artificial intelligence 
models, which can identify the intrinsic characteristics 
in historical carbon emission datasets, can be modified in 
real time to improve the accuracy of predictions. These 
models include artificial neural network (ANN) [10], 
generalised regression neural network (GRNN) [11], back 
propagation neural network (BPNN) [7], support vector 
machines (SVMs) [12], extreme learning machines [13], 
Elman neural network [14], long short-term memory 
networks (LSTMNs) [15]. The fourth type are grey pre-
diction models. Most of the forecasting methods men-
tioned above require a large amount of sample data or 
must consider the factors that influence  CO2 emissions; 
thus, the amount of data available and the number of var-
iables considered will affect the accuracy of forecasting. 
However, for variables such as  CO2 emissions, for which 
only short-term data are valid and the influencing fac-
tors are complex, the above methods often require long 
timescales for data collection, and certain data might 
prove challenging or even unattainable to gather. The 
grey model is a good solution to these problems, as it can 
be used to build prediction models for systems with lim-
ited data without considering the influence of other fac-
tors; therefore, this method has considerable advantages 
in cases with insufficient validation data, and it has been 
widely used for carbon emission prediction in different 
fields [16, 17]. Additionally, due to their straightforward 
structure, extensive applicability, minimal sample size 
requirements, and high precision, grey forecasting mod-
els are widely used in cases involving GDP and popula-
tion [18], energy imports demand [19], quarterly crude 
oil production and coke production [20], clean energy 
[21], green transformation of manufacturing industry 
[22], crude oil production [23], electricity transformer’s 
seasonal oil temperature [24], transport performance of 
civil aviation industry [25], oil reserves [26], innovation 
performance in high-tech industries[27], electricity con-
sumption [28], construction waste [29], rainstorm days 
[30], health of lithium battery [31], etc.

Early grey models were often limited by the inad-
equate use of new information, and they neglected time 
lags in data and system shocks. Scholars have continu-
ously optimised and improved these models, and the 
main improvements are as follows. First, background 

value optimisation was performed. Because the tradi-
tional background values are constructed using data 
adjacent to the mean, the magnitude of the background 
value is easily affected by certain extreme values in the 
original series, and this approach is mainly applicable to 
small-sample time series with gradual changes, making 
it fairly limited; therefore, scholars have optimised the 
background value construction method from different 
perspectives. For example, background value optimisa-
tion has been combined with initial term optimisation 
[32], genetic algorithms have been used to optimise the 
weighting coefficients of background values with a non-
linear time correction factor [33], generic optimisation-
based forms of background values have been applied [34], 
and background values have been optimised in stages 
based on minimising weighting errors [35]. Second, the 
cumulative approach has been improved. To increase the 
weight of new information, a fractional-order grey model 
was introduced, and it can reflect the priority of new 
information and generalize cumulative integer genera-
tion, with much better predictive performance than the 
integer-order grey model [36]. Since then, a large num-
ber of fractional-order grey prediction models have been 
proposed based on fractional-order cumulants, such as 
the fractional-order adaptive intelligent grey model [37], 
fractional-order nonlinear Bernoulli model [38], grey 
model with conformable fractional opposite-direction 
accumulation [39], fractional-order grey kernel model 
[40], conformable fractional-order grey model [41], and 
generalised fractional grey model [42]. To effectively 
use new information, reverse cumulative generation 
techniques have been introduced into grey models [43], 
conformable fractional reverse grey models [44], and 
adaptive reverse cumulative discrete grey models with 
time power terms [45]. Additionally, the damped cumu-
lative generating operator, the weakened fractional-order 
cumulative operator, and the Grunwald–Letnikov frac-
tional-order sequence generating operator were proposed 
to flexibly adjust the predictions of grey models [46–48]. 
Third, the original model structure has been extended. 
To improve the fitting performance of grey models for 
different types of data, scholars have extended the struc-
ture of the GM(1,1). For example, the GM(1, N|sin) was 
proposed to address the nonlinear relationship between 
and periodic oscillations of independent and depend-
ent variables [49]. Furthermore, nonlinear and peri-
odic components were integrated into the framework 
to accurately capture the evolving trends within time 
series data, thereby enhancing the grey model’s adapt-
ability to handle arbitrary periodic patterns [50]. For sea-
sonal data, a pioneering seasonal model was developed 
by embedding categorical dummy variables within the 
model architecture, enabling precise identification and 
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modelling of seasonal fluctuations [51]. A novel struc-
tural adaptive grey model combined with a data stacking 
technique was proposed to solve time series forecasting 
problems characterised by seasonality, nonlinearity and 
uncertainty [52]. In addition, several excellent grey mod-
els have been created based on extended model struc-
tures, such as the fractional time-delayed grey Bernoulli 
forecasting model (FBTDGM) [53], the fractional grey 
Gompertz model [54], the grey seasonal model based on 
cycle accumulation generation (CDGSM) [55], and the 
discrete grey seasonal model with the time power term 
(DGSTPM) [20]. Fourth, methods for prioritizing new 
information have been proposed. In the GM(1,1), equal 
weights are assigned to new information and old infor-
mation; obviously, this is not reasonable. Therefore, to 
improve the prediction accuracy, the new information 
can be flexibly given higher weights [56]. For example, 
an exponential parameter was introduced, an optimi-
sation algorithm was used to find the optimal parame-
ter value, and the weight of the information was set by 
adjusting the size of the parameter [1]. Since new infor-
mation has a large impact on the trend of the results, a 
new information-weighted cumulative generation opera-
tor was adopted [57]. A flexible dynamic fractional-order 
accumulation operator that utilises a dynamic nonlinear 
incomplete gamma function was developed to effectively 
exploit the more recent information hidden in a given 
time series [58]. A new cumulative operator incorporat-
ing a dynamic weight adjustment factor was proposed 
to enhance the timeliness of new information utilisation 
in grey forecasting methods [50]. Additionally, a rolling 
mechanism was introduced in the modelling procedure 
to prioritise the use of new information [59, 60]. Fifth, 
combinatorial models have been constructed. With the 
development of grey models, to avoid inconsistent accu-
racy due to improper model selection, combining fore-
casting models has become a good choice. Notably, grey 
models have been combined with other forecasting mod-
els to improve the accuracy and stability of forecasting, 
such as by combining autoregressive integrated moving 
average (ARIMA) and metabolic nonlinear grey model 
(MNGM) [61], combining volatile grey forecasting mod-
els and ARMA/RW models [62], combining GM(1,1) and 
linear weighted average mixed model [63], combining 
fuzzy information granulation (FIG) and grey autoregres-
sive model (GARM) [64], and combining grey model and 
convolutional neural network [65]. In general, the com-
bined models can be modified in real time based on the 
intrinsic mathematical characteristics of historical data 
series, thus effectively avoiding the shortcomings arising 
from the use of a single model to describe the trends of 
complex time series and greatly improving the prediction 
accuracy [66].

The above research has not only broadened the appli-
cation of grey prediction models but also improved the 
prediction accuracy in many cases; however, the exist-
ing models tend to ignore changes in system operation 
and disturbances to external contingencies. Therefore, 
Zhang and Wang [67] added the time breakpoints to 
the GM(1,1) and constructed two novel grey breakpoint 
models GBPM(1,1,t) and OGBPM(1,1,t). These mod-
els consider fluctuations in the system as a whole and 
changes in the system development trend. However, the 
setting of breakpoints is relatively subjective, which can 
significantly limit the application of the model, and the 
parameter estimation method used can lead to large 
model errors. The effects of disturbances tend to last 
for some time, and the impact of these external shocks 
on the future trend of a system may display a time lag. 
Therefore, in this paper, to avoid misjudging the time 
breakpoints and enhance the forecasting accuracy and 
applicability of the traditional model, three new grey 
breakpoint prediction models are established by intro-
ducing the grey prediction model development coef-
ficient a and grey action b after the fuzzy breakpoints. 
These models are the NOGBPM(1,1,t), NGBPM(1,1,t) 
and AGBPM(1,1,t). By comparing the new models with 
GM(1,1), FGM(1,1,r), GBPM(1,1,t) and OGBPM(1,1,t) in 
the simulation and prediction of  CO2 emissions in BRICS 
countries, the new models are tested and validated. Sev-
eral contributions can be made as follows:

(1) It is assumed that the breakpoint t∗ is not a fixed 
time but a time interval, and the optimal breakpoint 
tm within this interval is then determined according 
to the model fitting result and prediction accuracy. 
Subsequently, three new grey breakpoint prediction 
models are established: NOGBPM, NGBPM, and 
AGBPM.

(2) The parameter estimation method is optimised, and 
parameters are determined without differentiating 
data before or after a breakpoint; thus, all the origi-
nal data can be fully utilised when determining the 
parameters. This approach improves the accuracy 
of the parameters and the prediction results.

(3) Since the data trends before the optimal break-
point tm and after tm will change greatly, a two-stage 
background value calculation method is introduced 
into the model, and the optimal background values 
before and after the breakpoint are determined with 
the PSO algorithm.

(4) The validity and applicability of the three new mod-
els are verified using historical  CO2 emission data 
from BRICS countries, and the  CO2 emissions of 
the BRICS countries are projected for the period of 
2022–2025.
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This study is organised as follows. In Sect. Construction 
of grey breakpoint models, the establishment, optimisa-
tion and properties of the novel grey breakpoint models 
are discussed, and error measures and validity tests are 
introduced. In Sect.  Validation of the grey breakpoint 
prediction models, utilizing the  CO2 emission data of the 
BRICS countries, the GM, FGM, GBPM and OGBPM 
models, along with three newly constructed models, 
are employed for modelling. The prediction accuracy of 
these seven grey models is compared, thereby validating 
the effectiveness and adaptability of the novel grey break-
point models. Section Application in forecasting the  CO2 
emissions of BRICS countries presents the projections 
of  CO2 emissions in BRICS countries for the period of 
2022–2025 and Sect.  Conclusion offers the conclusions 
and policy implications drawn from the findings.

Construction of grey breakpoint models
Basic concept
Suppose the original sequence is 
X
(0)

=

(

x
(0)(1), x

(0)(2), · · · , x
(0)(n)

)T and the sequence 
X
(1)

=

(

x
(1)(1), x

(1)(2), · · · , x
(1)(n)

)T is obtained by the first-
order cumulative generation operator 1-AGO, where

The sequence Z
(1)

=

(

z
(1)(2), z

(1)(3), · · · , z
(1)(n)

)T is the 
mean sequence of X (1) , where

Definition 1: The basic form of the grey forecasting 
model GM(1,1) is

Definition 2: Assuming that external shocks affect the 
future dynamics of a system at time t*, the basic form of 
the grey breakpoint prediction model GBPM(1,1,t) is

where a is the development coefficient, b is the grey 
action, φ is a dummy variable assigned a value of 0 or 1, 
which is set based on whether a shock occurs or not. c 
is the coefficient of mutation, which represents the cor-
rection to the grey action of the original model after the 
occurrence of a shock and reflects the impact of external 

(1)x(1)(k) =

k
∑

i=1

x(0)(i), k = 1, 2..., n

(2)z(1)(k) =
x(1)(k)+ x(1)(k − 1)

2
, k = 2, 3, · · · n

(3)x(0)(k)+ az(1)(k) = b

(4)x(0)(k)+ az(1)(k) = b+ c × φ

φ =

{

1, k ≥ t∗

0, k < t∗

shocks on the system. The process of solving parameters 
is as follows.

When k < t∗ , 
[

a b
]T are estimated using the least 

square method (LSM), as follows.

When k ≥ t∗ , the LSM is used directly to estimate the 
parameter c, i.e.,

Then, according to a whitening equation,

Now, the time response equation is obtained:

Definition 3: The basic form of the optimised grey 
breakpoint prediction model OGBPM(1,1,t) is

where a, b, c and φ have the same meanings as above. ε 
is the coefficient of change in development, which repre-
sents the correction to the original model development 
coefficient after a shock has occurred and reflects the 
shocks’ influence on the system’s development trend. The 
model is established in the same way as above, except for 
the estimation of parameters ε and c. The parameters are 
determined as follows.

When k ≥ t∗ , the simulated ensemble value is 
expressed as

(5)
[

â

b̂

]

= (BTB)−1BTY

(6)B =











−z(1)(2) 1

−z(1)(3) 1

.

.

.
.
.
.

−z(1)(t∗ − 1) 1











, Y =











x(0)(2)

x(0)(3)
.
.
.

x(0)(t∗ − 1)











(7)ĉ = min

n
∑

k=t∗

(

x(0)(k)+ âz(1)(k)− b̂− c
)2

(8)dx(1)

dt
+ ax(1) = b+ c × φ

(9)
x̂
(1)(k) = (x(1)(t∗ − 1)−

b+ c × φ

a
)e−a(k−t

∗+1)

+
b+ c × φ

a
, k = 1, 2, · · · n

(10)x(0)(k)+ (a+ ε × φ)z(1)(k) = b+ c × φ

φ =

{

1, k ≥ t∗

0, k < t∗
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According to Eq. (12), the parameter ε can be calcu-
lated as

Thus, based on ε , the optimal estimate of c is

However, the above process of solving for the param-
eters comes with jump errors, and c and ε do not fully 
utilise all information associated with the original data, 
leading to significant biases. Additionally, when the 
length of time after a breakpoint is extremely short, i.e., 
when the available data are insufficient, it is difficult to 
guarantee the accuracy of the parameters and predictions 
by the LSM. Therefore, a unified calculation method is 
proposed for parameter estimation, making the parame-
ter solutions easier to obtain and enhances the novel grey 
breakpoint model.

Novel grey breakpoint prediction models
Based on the above construction of GBPM(1,1,t) and 
OGBPM(1,1,t), the fuzzy breakpoint assumptions, parame-
ter estimation methods and background values of the origi-
nal models are optimised to better simulate shocks and 
enhance the modelling accuracy, resulting in three novel 
grey breakpoint prediction models.

The impact of disturbance on the system’s future tend 
may display a time lag. To avoid misjudging the breakpoint 
of a shock, it is assumed that the breakpoint t∗ is not a 
fixed time but a time interval, and the most suitable break-
point tm within that interval is determined; therefore, it is 

(11)x(0)(k + 1) = e−(α̂+ε̂)x(0)(k), k ≥ t∗

ε = min

n−1
∑

k=t∗

(x(0)(k + 1)− e−(α̂+ε)x(0)(k))2

(12)ε = − ln

(

(BTB)−1BTY
)

− â

B =











x(0)(t∗)

x(0)(t∗ + 1)
.
.
.

x(0)(n− 1)











, Y =











x(0)(t∗ + 1)

x(0)(t∗ + 2)
.
.
.

x(0)(n)











(13)

ĉ = (â+ ε)(x(1)
(

t
∗ − 1

)

−

n
∑

k=t∗
x(0)(k)e−(â+ε)(k−t

∗+1)

(

1− e(â+ε)
) n

∑

k=t∗
e−2(â+ε)(k−t∗+1)

)− b̂

assumed that a shock affecting the future dynamics of the 
system, such as a policy change or economic crisis, occurs 
at a certain time t = (t1, t2, · · · , ts) , where tm is the best-fit 
breakpoint. φ is set based on whether a shock occurs or 
not.

Definition 4: By the OGBPM(1,1,t) model, the corre-
sponding parameter estimation method and fuzzy break-
point assumptions are improved and the grey action 
parameter and development trend are adjusted to con-
struct a new optimised grey breakpoint prediction model 
NOGBPM(1,1,t) in the following basic form.

Definition 5: Based on the GBPM(1,1,t) model, the 
appropriate parameter estimation method and fuzzy 
breakpoint assumptions are improved and the grey action 
parameter is adjusted to construct a new grey breakpoint 
prediction model NGBPM(1,1,t), which has the following 
basic form.

Definition 6: The basic form of AGBPM(1,1,t) model 
with fuzzy breakpoint assumptions and modified devel-
opment trends is as follows.

NOGBPM(1,1,t) is used as an example to further 
explain the parameter solutions, time response equa-
tion, final reduced equation and optimal time breakpoint. 
NGBPM(1,1,t) and AGBPM(1,1,t) are based on the same 
process.

The basic form of NOGBPM(1,1,t) can also be written in 
the form of a segmented function:

The estimation of parameters with the LSM is as follows.

(14)φ =

{

1, k ≥ tm
0, k < tm

(15)x(0)(k)+ (a+ ε × φ)z(1)(k) = b+ c × φ

(16)x(0)(k)+ az(1)(k) = b+ c × φ

(17)x(0)(k)+ (a+ ε × φ)z(1)(k) = b

(18)























































x(0)(2)+ (a+ 0)z
(1)
1 (2) = 1 · b+ 0 · c

.

.

.

x(0)(tm − 1)+ (a+ 0)z
(1)
1 (tm − 1) = 1 · b+ 0 · c

x(0)(tm)+ (a+ ε)z
(1)
2 (tm) = 1 · b+ 1 · c

.

.

.

x(0)(n)+ (a+ ε)z
(1)
2 (n) = 1 · b+ 1 · c

(19)p̂ = (â, ε̂, b̂, ĉ)T = (BTB)−1BTY
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The whitening equation for this model is

Alternatively, this equation can be expressed as

Based on the whitening equation, the time response 
equation is established

where C is the unknown constant, and according to the 
priority of new information and to effectively reflect the 
segmented nature of the NOGBPM(1,1,t), the cumulative 
data before the best-fit breakpoint are used as the initial 
values to obtain the time response:

Finally, the reduced modelling equation can be 
obtained according to the cumulative reduction formula.

An optimal breakpoint tm is selected by minimising the 
mean absolute percentage error (MAPE) of the modelled 
data, and the following are the specific functions.

B =































−z
(1)
1

(2) 0 1 0

.

.

.

.

.

.

.

.

.

.

.

.

−z
(1)
1

(tm − 1) 0 1 0

−z
(1)
2

(tm)

.

.

.

−z
(1)
2

(n)

−z
(1)
2

(tm)

.

.

.

−z
(1)
2

(n)

1

.

.

.

1

1

.

.

.

1































Y =

















x(0)(2)

x
(0)(3)

.

.

.

x
(0)(n)

















(20)dx(1)

dt
+ (a+ ε × φ)x(1) = b+ c × φ















dx(1)(k)

dt
+ ax(1)(k) = b k < tm

dx(1)(k)

dt
+ (a+ ε)x(1)(k) = b+ c k ≥ tm

(21)

x̂(1)(k) = Ce−(a+ε×φ)(k−1) +
b+ c × φ

a+ ε × φ
, k = 1, 2, · · · n

(22)

x̂
(1)(k) = (x(1)(tm − 1)−

b+ c × φ

a+ ε × φ
)e−(a+ε×φ)(k−tm+1)

+
b+ c × φ

a+ ε × φ
, k = 1, 2, n

(23)x̂(0)(k) = x̂(1)(k)− x̂(1)(k − 1), k = 2, 3, · · · , n























x̂
(0)(k) =

�

1− e
â
�

�

x
(1)(tm − 1)−

b̂

â

�

e
−â(k−tm+1)

k < tm

x̂
(0)(k) =

�

1− e
(â+ε̂)

�

�

x
(1)(tm − 1)−

b̂+ ĉ

â+ ε̂

�

e
−(â+ε̂)(k−tm+1)

k ≥ tm

(24)

minMAPE =
1

n

n
∑

k=1

∣

∣

∣

∣

x(0)(k)− x̂(0)(k)

x(0)(k)

∣

∣

∣

∣

× 100%

Optimisation of background values
In the original modelling process, the true value x(1)(k) 
after differentiation is estimated from the background value 
z(1)(k) , which is calculated based on an approximation,

which is one of the main reasons for the error. Moreo-
ver, because the original data studied in this paper are 
segmented, the two-stage background value calculation 
methods used, and the optimisation of the background 
value is also segmented to best consider the breakpoint 
characteristics of the model and prioritise new informa-
tion in the modelling process. Next, we set α,β ∈

[

0, 1
]

 , 
as follows.

The optimal values of the parameters α and β can be 
obtained using an optimisation algorithm. In this paper, 
PSO is chosen to calculate the above two unknown param-
eters to minimise the MAPE of the model-fitted data. 
Based on NOGBPM(1,1,t), only one of the parameters 
c or ε needs to be removed to obtain NGBPM(1,1,t) or 
AGBPM(1,1,t).

Adaptabilities of the novel models
Although the aforementioned three models exhibit rel-
ative consistency in terms of formulas and calculations, 
they differ in nature and are applicable to distinct sce-
narios, which are described below.

(25)

s.t.













p̂ = (â, ε̂, b̂, ĉ)T = (BT B)−1BT Y

x̂(1)(k) = (x(1)(tm − 1)−
b+c×φ
a+ε×φ

)e−(a+ε×φ)(k−tm+1) +
b+c×φ
a+ε×φ

x̂(0)(k) = x̂(1)(k)− x̂(1)(k − 1)

k = 2, 3, · · · , n

(26)

z
(1)(k) =

∫

k

k−1

x
(1)(k)dt ≈

x(
1)(k)+ x(

1)(k − 1)

2
, k = 2, 3, · · · n

(27)

z
(1)
1

(k) =

∫

k

k−1

x
(1)(t)dt = αx(k − 1)+ (1− α)x(k), k < tm

z
(1)
2

(k) =

∫

k

k−1

x
(1)(t)dt = βx(k − 1)+ (1− β)x(k), k ≥ tm

(28)

minMAPE =
1

n

n
∑

k=1

∣

∣

∣

∣

x(0)(k)− x̂(0)(k)

x(0)(k)

∣

∣

∣

∣

× 100%

(29)

s.t.





























z
(1)
1

(k) = αx(k − 1)+ (1− α)x(k), k < tm

z
(1)
2

(k) = βx(k − 1)+ (1− β)x(k), k ≥ tm

p̂ = (â, ε̂, b̂, ĉ)T = (BT B)−1BT Y

x̂(1)(k) = (x(1)(tm − 1)−
b+c×φ
a+ε×φ

)e−(a+ε×φ)(k−tm+1) +
b+c×φ
a+ε×φ

x̂(0)(k) = x̂(1)(k)− x̂(1)(k − 1)

k = 2, 3, · · · , n
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Scenario 1: When the coefficients ε = 0, c = 0, α = 0.5, 
and β = 0.5, the above three models are consistent with 
GM(1,1) and provide good compatibility.

The meanings of a and b are consistent with tradi-
tional grey models. c is the coefficient of mutation, 
which represents the modification of the grey action of 
the original model after the occurrence of a shock. ε is 
the coefficient of change in development, which repre-
sents the modification of the development coefficient 
of the original model after the occurrence of a shock 
and reflects the shock’s influence on the system. When 
there are no external shocks to the system, the above 
three models evolve into the traditional grey model.

Scenario 2: The three grey breakpoint prediction 
models are effectively used to evaluate the effects of 
external disturbances from different perspectives.

In the process of building the NOGBPM(1,1,t), both 
the development coefficient and the grey action are 
modified based on the segmented data, which can 
lead to the overly fragmented treatment of informa-
tion before and after a breakpoint. Notably, in over-
fragmentation, the prediction of future information is 
based only on the information after the breakpoint. If 
the information after the breakpoint is limited, it is dif-
ficult to guarantee the prediction accuracy. Therefore, 
the AGBPM(1,1,t) model corrected only for the a and 
NGBPM(1,1,t) corrected only for the b are proposed to 
account for the effects of external disturbances.

Scenario 3: The effects of external shock on the sys-
tem are characterised by phases, diversity and time 
lags, and the three grey breakpoint forecasting models 
can reflect these characteristics with good accuracy.

To reflect the influence of stage, the background val-
ues are optimised paper by differentiating stages before 
and after breakpoints and determining the relevant 
parameters with PSO to obtain different background 
values. To address the effect of diversity, the influence 
of shocks on the a and b is considered. To best fit the 
original data, these three grey breakpoint prediction 
models are compared, and the model with the lowest 
fitting error is selected to predict the future develop-
ment trend of the system. To avoid the errors caused 
by time lags, a breakpoint is set as a period with a fuzzy 
interval, and the optimal breakpoint is determined by 
calculating the minimum comprehensive error. This 
approach improves the prediction accuracy.

Error metrics
As the raw data in this paper are divided into pre-break-
point and post-breakpoint components in the modelling 
process, the segmented data must also be assessed to 
calculate the pre-breakpoint fit, post-breakpoint fit, pre-
diction accuracy and combined error based on different 

error metrics. In the simulation phase, the mean absolute 
percentage error before a breakpoint (BMAPE), mean 
absolute percentage error after a breakpoint (AMAPE) 
and mean absolute percentage error of simulation 
(MAPE) are used to calculate the simulation error of the 
model, as follows:

where t is the time breakpoint. The background value is 
optimised with the condition that MAPE is minimised; 
i.e., when the PSO algorithm is used to calculate the 
background value, the output parameter is that which 
minimizes the MAPE. The mean absolute percentage 
error of prediction (FMAPE) is applied to analyse the 
prediction error, which is given by

where f is the number of prediction periods. As the aim 
of improving the model is to achieve increased forecast-
ing accuracy, the FMAPE is also an important indicator 
for determining the effectiveness of the model. To indi-
cate the overall fit of the model in the fitting and forecast-
ing phases, the combined mean absolute percentage error 
(CMAPE) is used. Notably, the CMAPE can be applied as 
a criterion to determine the optimal time breakpoint (the 
time with the lowest CMAPE is selected as the optimal 
breakpoint). The CMAPE will also be used as a criterion 
for the final choice of model. The model with the low-
est CMAPE is used to forecast future  CO2 emissions in 
BRICS countries.

Modelling process
To clearly show the modelling and parameter solution 
processes, the modelling process is depicted in the Fig. 1.

(30)

BMAPE =
1

t − 1

t−1
∑

k=1

∣

∣

∣

∣

x(0)(k)− x̂(0)(k)

x(0)(k)

∣

∣

∣

∣

× 100%

(31)

AMAPE =
1

n− t + 1

n
∑

k=t

∣

∣

∣

∣

x(0)(k)− x̂(0)(k)

x(0)(k)

∣

∣

∣

∣

× 100%

(32)MAPE =
1

n

n
∑

k=1

∣

∣

∣

∣

x(0)(k)− x̂(0)(k)

x(0)(k)

∣

∣

∣

∣

× 100%

(33)FMAPE =
1

f

n+f
∑

k=n+1

∣

∣

∣

∣

x(0)(k)− x̂(0)(k)

x(0)(k)

∣

∣

∣

∣

× 100%

(34)

CMAPE =
1

n+ f

n+f
∑

k=1

∣

∣

∣

∣

x(0)(k)− x̂(0)(k)

x(0)(k)

∣

∣

∣

∣

× 100%
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Validation of the grey breakpoint prediction 
models
To verify the validity and applicability of the grey break-
point forecasting models, carbon emission data from 
BRICS countries are selected for analysis in this paper, 
and traditional grey models (GM) [68], fractional order 
grey models (FGM) [69], and GBPM and OGBPM mod-
els are selected for comparison.  CO2 emissions data from 
2009–2019 are used for modelling, and  CO2 emissions 
data from 2020–2021 are applied for projection com-
parison. The  CO2 emissions data are obtained from the 
BP Statistical Review of World Energy. Overall, seven 
grey projection models are constructed to predict two 
periods backward. The breakpoint and fuzzy breakpoint 
intervals are set according to each country’s carbon emis-
sion policies and the available raw data, and the param-
eter estimates, fitted values and predicted values of each 
model are calculated. Finally, the MAPE and FMAPE of 
the seven models are compared, and the model with the 
smallest combined error is selected as the optimal pre-
diction model.

The CO2 emissions of Brazil
Figure 2 shows that before 2014, Brazil’s  CO2 emissions 
displayed an upwards trend, likely influenced by envi-
ronmental protection policies, and after 2014,  CO2 emis-
sions showed a downwards trend; therefore, 2014, i.e., 
t∗ = 6 , is selected as the breakpoint of the GBPM and 
OGBPM models. Then, the GM and FGM methods are 
used to establish four benchmark models, and the predic-
tion error is calculated.

Since the impact of environmental policies on  CO2 
emissions is continuous, 2012–2016 is selected as the 
fuzzy breakpoint interval for the NOGBPM, NGBPM, 
and AGBPM models, i.e., t = (5, 6, 7, 8); then, by calcu-
lating the CMAPE of the three models at different times, 
the optimal breakpoints of the three models are deter-
mined according to the minimum CMAPE as tm = 7, tm = 
4, and tm = 8, and optimal predictions are obtained. The 
process of background value optimisation using PSO is 
shown in Fig.  3. The specific parameters of each model 
are shown in Table 1, and the seven sets of predicted val-
ues are shown in Fig. 4.

The fit of the GM is a slowly rising straight line, and 
the fit of the FGM is a smooth curve that rises and then 

Fig. 1 Flow chart of modelling
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falls. The coefficient of mutation c for the GBPM is much 
smaller than 0, which is equivalent to shifting the fit-
ted curve significantly downwards at the breakpoint. 
The coefficient of change in development ε for both the 
OGBPM and NOGBPM models is greater than 0, and 

|ε| > a , which corresponds to a change in the direction 
of the fitted data at the breakpoint. The coefficient of 
mutation c for the NGBPM is greater than 0 but gener-
ally small, which is equivalent to shifting the fitted curve 
upwards by some distance. The coefficient of muta-
tion c and coefficient of change in development ε for the 
AGBPM have different signs, reflecting the trends of the 
fitted data before and after the breakpoint. These results 
illustrate that the model with temporal breakpoints yields 
the best fit and that the optimised model best depicts the 
trends in the original data.

A comparison of the errors of the seven models is 
shown in Table  2 and Fig.  5. During the simulation 
phase, the MAPE values of both the OGBPM and the 
NOGBPM are relatively small. However, the OGBPM is 
affected by overfitting, mainly due to the characteristics 
of the model, which equates to constructing distinct 
GM(1,1) models for the periods preceding and suc-
ceeding a temporal breakpoint t∗ ; thus, the correspond-
ing fitted data are split before and after a breakpoint, 

Fig. 2 CO2 emissions in Brazil from 2009–2021

Fig. 3 PSO process for background value coefficients
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which is also equivalent to creating two different fitted 
curves that are spliced together. This approach leads to 
a very small MAPE and consequently a small CMAPE. 
The original data before the breakpoint are not fully 
utilised in predictions, and the amount of data after the 
breakpoint is often limited, making it difficult to guar-
antee forecasting accuracy. In the forecasting stage, 
the NOGBPM yields the smallest FMAPE and demon-
strates the highest precision in forecasting. Therefore, 
from the above analysis of the fitting curves and model-
ling error, it can be concluded that the NOGBPM offers 
the highest fitting degree and most accurate predictive 
performance for  CO2 emissions in Brazilian. Notably, 
this model can simulate the real system trends and 
accurately predict future data. Therefore, the NOG-
BPM is finally chosen to forecast  CO2 emissions in Bra-
zil from 2022 to 2025.

The  CO2 emissions of Russia
Figure  6 shows that Russia’s  CO2 emissions change in 
approximately 2011 and approximately 2015, and the 
change is greater in 2015; therefore, 2015, i.e., t∗ = 7 , is 
selected as the breakpoint for the GBPM and OGBPM 
models. Then, the GM and FGM methods are used to 
establish four benchmark models, and the modelling 
errors are calculated.

It is difficult to determine the optimal time breakpoint 
based on data assessment and policy analysis alone; 
therefore, 2011–2015 is selected as the fuzzy breakpoint 
interval for the NOGBPM, NGBPM and AGBPM mod-
els, i.e., t = (3, 4, 5, 6, 7). Then, the optimal breakpoints 
for the three models are determined by calculating the 
CMAPE values at different times. The optimal break-
points of the three models are tm = 5, tm = 3, and tm = 3 
according to the minimum CMAPEs, and optimal fore-
casts are obtained. The process of background value 
optimisation using PSO is shown in Fig.  7. The specific 
parameters of each model are shown in Table 3, and the 
seven sets of predicted values are shown in Fig. 8.

Since the optimal cumulative order of the FGM is 1, 
the fitted results of the FGM and GM models overlap as a 
slowly rising straight line, which does not fit the trend of 
the data very well. The GBPM and the OGBPM overlap 
before the breakpoint, and after the breakpoint, the coef-
ficient of mutation c is less than 0 in both cases, reflecting 
a gradual reduction in  CO2 emissions. The coefficient of 
change in development ε of the OGBPM is smaller than 
0, indicating that the emissions trend accelerates after the 
breakpoint, which does not reflect the actual situation; 

Table 1 Coefficient estimates

Model Coefficient estimates

GM a = − 0.0022, b = 495.2651

FGM r = 0.6155, a = 0.0644, b = 378.6288

GBPM t = 6, a = − 0.0597, b = 409.7168, c = − 135.2210

OGBPM t = 6, a = − 0.0597, b = 409.7168, ε = 0.0922, c = 227.7881

NOGBPM t = 7, a = − 0.0581, b = 410.4514, ε = 0.0830, c = 195.4888, 
α = 0.5366, β = 0.7270

NGBPM t = 4, α = 0, β = 1, a = 0.0061, b = 463.0535, c = 54.0779,

AGBPM t = 8, a = − 0.0339, b = 440.5392, ε = 0.0259, α = 0.9646, 
β = 1

Fig. 4 Simulation and prediction of  CO2 emissions in Brazil 
from 2009–2021

Table 2 Simulation and prediction errors for  CO2 emissions in Brazil

Error GM FGM GBPM OGBPM NOGBPM NGBPM AGBPM

MAPE(%) 4.7887 2.3768 12.8554 1.6185 2.1769 4.9242 4.0559

FMAPE(%) 7.9519 6.5066 33.8892 6.2826 6.0870 5.4252 6.6495

CMAPE(%) 5.2753 3.0122 16.0914 2.3360 2.7785 5.0013 4.4549

Fig. 5 Simulation and prediction errors for  CO2 emissions in Brazil
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additionally, the coefficient of change in development 
ε and the coefficient of mutation c of the NOGBPM are 
both larger than 0 but generally small, and the corre-
sponding fitted curve is relatively flat. The coefficient of 
mutation c of the NGBPM is larger than 0 and is equiv-
alent to shifting the fitted curve upwards by a certain 

distance. The coefficient of change in development ε and 
development coefficient a of the AGBPM have opposite 
signs, reflecting the trends of the fitted data before and 
after a breakpoint. The optimal breakpoint in the AGBPM 
case is the same as that for the NOGBPM model, so the 
parameters and fitted curves are very similar.

A comparison of the errors of the seven models is 
shown in Table 4 and Fig. 9. In the simulation phase, the 
OGBPM yields the smallest MAPE, but in reality, the 
OGBPM is influenced by overfitting, which in turn leads 
to small CMAPE values; thus, prediction accuracy is dif-
ficult to guarantee. In the prediction stage, the NOG-
BPM yields the smallest FMAPE and the best prediction 
accuracy. Therefore, the NOGBPM displays optimal per-
formance in both the simulation and prediction stages, 
reflecting the superiority of the new model. From the 
above analysis of the fitting curves and modelling errors, 
it can be concluded that the NOGBPM provides the best 
fit and prediction accuracy; therefore, the NOGBPM is 
finally chosen to forecast the  CO2 emissions in Russia 
from 2022–2025.

Fig. 6 CO2 emissions in Russia from 2009–2021

Fig. 7 PSO iterative process for background value coefficients
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The  CO2 emissions of India
Figure  10 shows that India’s  CO2 emissions have con-
sistently displayed an upwards trend, and the nature 
of the breakpoint is not obvious; however, since the 
upwards trend decreases after 2018 and the data 
for 2020 indicate a decrease in emissions, t∗ = 10 is 
selected as the breakpoint for the GBPM and OGBPM 
models. Then, the GM and FGM methods are used to 
establish the four benchmark models, and the corre-
sponding modelling error is calculated.

In this case, we set 2011–2019 as the fuzzy break-
point interval for the NOGBPM, NGBPM and AGBPM 
models, i.e., t = (3, 4, 5, 6, 7, 8, 9, 10, 11), and then 
determine the optimal breakpoints for the three mod-
els by calculating the CMAPE values at different times. 
The optimal breakpoints of the three models are tm = 
10, tm = 3, and tm = 10 according to the minimum 

CMAPEs, and optimal predictions are obtained. The 
process of background value optimisation using PSO 
is shown in Fig. 11. The specific parameters are shown 
in Table  5, and the seven sets of predicted values are 
shown in Fig. 12.

The upwards trend in  CO2 emissions in India is evi-
dent, with overfitting of the fitted curves for each model 
before the breakpoint. After the optimal breakpoint, the 
fitted curves for both NOGBPM and AGBPM decrease, 
with more realistic fits. The errors of the seven models 
are compared, as shown in Table  6 and Fig.  13. During 
the simulation phase, the OGBPM yields the smallest 
MAPE, but in reality, the OGBPM is influenced by over-
fitting. Additionally, the GM and FGM provide better 

Table 3 Coefficient estimates

Model Coefficient estimates

GM a = − 0.0043, b = 2006.2633

FGM r = 1, a = − 0.0043, b = 2006.2633

GBPM t = 7, a = − 0.0042, b = 2015.7876, c = − 16.8144

OGBPM t = 7, a = − 0.0042, b = 2015.7876, ε = − 0.0108, c = − 203.2097

NOGBPM t = 5, a = − 0.0207, b = 1931.0668, ε = 0.0130, c = 25.9718, α = 0.7619, 
β = 0

NGBPM t = 3, a = − 0.0032, b = 1978.1822, c = 43.0684, α = 1, β = 0.9417

AGBPM t = 5, a = − 0.0148, b = 1968.7888, ε = 0.0085, α = 0.6928, β = 0

Fig. 8 Simulation and prediction of  CO2 emissions in Russia 
from 2009–2021

Table 4 Simulation and prediction errors of  CO2 emissions in Russia

Error GM FGM GBPM OGBPM NOGBPM NGBPM AGBPM

MAPE(%) 1.3385 1.3385 1.6605 0.6426 1.4284 1.7955 1.5076

FMAPE(%) 3.6874 3.6874 3.6753 4.5816 3.5755 3.7219 3.5575

CMAPE(%) 1.6999 1.6999 1.9705 1.2486 1.7587 2.0919 1.8230

Fig. 9 Simulation and prediction errors for  CO2 emissions in Russia
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data fitting results with stable trends, and the NOGBPM 
yields MAPE < 2%, which reflects a good fit. In the pro-
jection stage, the abrupt changes in the raw data in 2020 
lead to large values of the overall FMAPE; however, due 
to the poor selection of breakpoints with the OGBPM 
and NOGBPM models, the NOGBPM performs best, 

with a forecasting error of only 5.4% and a combined 
error of only 2.2%. In summary, the NOGBPM yields the 
best modelling accuracy and forecasting performance for 
 CO2 emission in India and is selected to forecast India’s 
 CO2 emissions from 2022–2025.

The  CO2 emissions of China
Figure  14 shows that China’s  CO2 emissions gradually 
decreased from 2011 to 2015, but it is difficult to deter-
mine the optimal breakpoint through manual observa-
tion of the data; therefore, 2011–2015 is selected as the 
fuzzy breakpoint interval for the NOGBPM, NGBPM 
and AGBPM models, i.e. t = (3, 4, 5, 6, 7), and the opti-
mal breakpoints for the three models are determined by 
calculating the CMAPE values at different times. The 
optimal breakpoints of the three models are tm = 7, tm = 
3, and tm = 7 according to the minimum CMAPE values, 
and the optimal predictions are obtained. The process 
of background value optimisation using PSO is shown 
in Fig.  15. Among the above three models, two yield 
the best results at tm = 7 ; therefore, t∗ = 7 is set as the 

Fig. 10 CO2 emissions in India from 2009–2021

Fig. 11 PSO iterative process for background value coefficients
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breakpoint for the GBPM and OGBPM models. Next, the 
GM and FGM methods are used to establish benchmark 
models, and the modelling errors are calculated. The spe-
cific parameters are shown in Table 7, and the seven sets 
of predicted values are shown in Fig. 16.

The fit for the GM results in a straight line with an 
upwards trend, the fit for the FGM results in a smooth 
curve that rises and then falls, and the models with a 
breakpoint set to 7 all show some degree of a downwards 
trend after the breakpoint, which reflects the actual situ-
ation. For the OGBPM, NOGBPM and AGBPM mod-
els, the coefficient of change in development ε and the 
development coefficient a have different signs, indicat-
ing that the trend of the fitted data after the breakpoint 

Table 5 Coefficient estimates

Model Coefficient estimates

GM a = − 0.0442, b = 1743.1920

FGM r = 0.8975, a = − 0.0270, b = 1610.2394

GBPM t = 10, a = − 0.0479, b = 1712.8329, c = − 77.5731

OGBPM t = 10, a = − 0.0479, b = 1712.8329, c = 735.5023, ε = 0.0370

NOGBPM t = 10, a = − 0.0479, b = 1714.2486, c = 734.2379, ε = 0.0371, α = 0.4830, β = 
0.4990

NGBPM t = 3, a = − 0.0426, b = 1700.1889, c = 65.4274, α = 0.4964, β = 0.5476

AGBPM t = 10, a = − 0.0477, b = 1716.2077, ε = 0.0061, α = 0.4950, β = 1

Fig. 12 Simulation and prediction of  CO2 emissions in India 
from 2009–2021

Table 6 Simulation and prediction errors for  CO2 emissions in India

Error GM FGM GBPM OGBPM NOGBPM NGBPM AGBPM

MAPE (%) 1.3679 0.8259 1.8503 1.0766 1.5679 2.7288 2.3566

FMAPE (%) 12.1953 9.5150 11.9448 5.3948 5.3953 11.2262 8.0717

CMAPE (%) 3.0336 2.1626 3.4033 1.7409 2.1567 4.0361 3.2358

Fig. 13 Simulation and prediction errors for  CO2 emissions in India Fig. 14 CO2 emissions in China from 2009–2021
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has slowed. An error comparison of the seven models is 
shown in Table 8 and Fig. 17. In the simulation stage, all 
seven models display good modelling performance, but 
the OGBPM is influenced by overfitting, and the AGBPM 
performs best among the three new models proposed in 
this paper. In the prediction stage, the AGBPM displays 
the best prediction accuracy and can reflect the real 

system changes for the accurate prediction of future data. 
Therefore, the AGBPM is finally chosen to forecast Chi-
na’s  CO2 emissions from 2022 to 2025.

The  CO2 emissions of South Africa
Figure 18 shows that the trend of  CO2 emissions in South 
Africa is very complex, and it is difficult to determine the 

Fig. 15 PSO iteration process for background value coefficients

Table 7 Coefficient estimates

Model Coefficient estimates

GM a = − 0.0155, b = 9574.3042

FGM r = 0.8312, a = 0.0143, b = 8517.5448

GBPM t = 7, a = − 0.0309, b = 9135.5219, c = − 962.6042

OGBPM t = 7, a = − 0.0309, b = 9135.5219, c = 65.5797, ε = 0.0119

NOGBPM t = 7, a = − 0.0305, b = 8993.4245, c = 215.3964, ε = 0.0115, α = 1, β = 
0.4561

NGBPM t = 3, a = − 0.0119, b = 9079.9911, c = 819.7682, α = 1, β = 0.2619

AGBPM t = 7, a = − 0.0297, b = 9035.6664, ε = 0.0088, α = 0.9881, β = 0.5133
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optimal breakpoint based on observation alone. There-
fore, 2012–2019 is selected as the fuzzybreakpoint inter-
val of the NOGBPM, NGBPM, and AGBPM models, i.e., 
t = (3, 4, 5, 6, 7, 8, 9, 10, 11), and the optimal breakpoints 
of the three models are determined by calculating the 
CMAPE at different times. The optimal breakpoints of 
the three models are tm = 8, tm = 6, and tm = 6 according 
to the minimum CMAPE values, and the optimal predic-
tions are obtained. The process of background value opti-
misation using PSO is shown in Fig. 19. Among the above 
three models, two of them both yield the best results at 
tm = 6 , so t∗ = 6 is selected as the breakpoint for the 
GBPM and OGBPM models. Then, GM and FGM base-
line models are established, and the modelling errors are 
calculated. The specific parameters are shown in Table 9, 
and the seven sets of predicted values are shown in 
Fig. 20.

Since the optimal cumulative order of the FGM is 1, 
the fitted results of the FGM and GM models overlap 
as a slowly declining straight line, which does not fit the 
trend of  CO2 emissions well. The results of the GBPM 
and OGBPM overlap before the breakpoint and display 
a downwards trend, and at the breakpoint, the GBPM 
result shifts substantially upwards, but the trend is still 
downwards. Additionally, the ε value of the OGBPM is 
less than 0, and |ε| > a , indicating an upwards trend in 
the fitted data after the breakpoint and reflecting a grad-
ual increase in  CO2 emissions; these results reflect the 
sudden increases in emissions in 2016 and 2019. The ε 

and c values of the NOGBPM, NGBPM and AGBPM 
models are small, and all these models fit the original data 
well, with NGBPM being the most accurate in 2020 and 
2021, reflecting its excellent forecasting performance.

A comparison of the errors of the seven models is 
shown in Table 10 and Fig. 21. In the simulation stage, 
the GM and FGM models yield the smallest MAPE, but 
in practice, there is not much difference between the 
models. In the prediction stage, the NGBPM produces 
the smallest FMAPE and optimal prediction accu-
racy, while the GM and FGM models yield the largest 
FMAPE values. Although the final combined error of 
1.9245% for the GM and FGM models is smaller than 
that of 1.9265% for the NGBPM model, based on the 

Fig. 16 Simulation and prediction of  CO2 emissions in China 
from 2009–2021

Table 8 Simulation and prediction errors for  CO2 emissions in China

Error GM FGM GBPM OGBPM NOGBPM NGBPM AGBPM

MAPE (%) 1.6355 1.3233 1.4367 0.6542 1.5701 1.5894 1.5654

FMAPE (%) 1.8665 6.5404 2.6713 1.4907 1.4912 3.0247 1.4083

CMAPE (%) 1.6710 2.1259 1.6266 0.7829 1.5580 1.8102 1.5412

Fig. 17 Simulation and prediction errors for  CO2 emissions in China

Fig. 18 CO2 emissions in South Africa from 2009–2021
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above fitting curve and error analysis, it is obvious that 
the NGBPM is most suitable; therefore, the NGBPM is 
selected to forecast South Africa’s  CO2 emissions from 
2022 to 2025.

In the comprehensive analysis of the performance of 
the seven models described above for forecasting  CO2 
emissions in BRICS countries, the GM and the FGM 

produce smooth curves; therefore, these models can-
not capture the trend of  CO2 emissions data or provide 
accurate system forecasts after an external shock to the 
system. Compared with the GM and FGM models, the 
three grey breakpoint prediction models are capable 
of accurately capturing the actual variations within the 
system, but the original breakpoint models, the GBPM 

Fig. 19 PSO iteration process for value coefficients

Table 9 Coefficient estimates

Model Coefficient estimates

GM a = 0.0003, b = 503.0479

FGM r = 1, a = 0.0003, b = 503.0479

GBPM t = 6, a = 0.0075, b = 513.7434, c = 18.8120

OGBPM t = 6, a = 0.0075, b = 513.7434, c = − 15.5447, ε = − 0.0085

NOGBPM t = 8, a = 0.0048, b = 510.0705; c = 11.3591, ε = − 0.0007, α = 0.3168, 
β = 0

NGBPM t = 6, a = 0.0040; b = 503.2481; c = − 1.2596; α = 1; β = 0.3449

AGBPM t = 6, a = 0.0040; b = 508.1228; ε = − 0.0025; α = 0.7880; β = 0.0885
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and OGBPM, set unique breakpoints. Thus, the optimal 
breakpoint cannot be easily confirmed if the data trend is 
complex. The NOGBPM, NGBPM and AGBPM models 
use fuzzy breakpoint intervals to achieve accurate system 
predictions. The NOGBPM performs best in fitting data 
for Brazil, Russia and India, the AGBPM performs best in 
fitting data for China and the NGBPM performs best in 
fitting data for South Africa.

Application in forecasting the  CO2 emissions 
of BRICS countries
In this section, the  CO2 emissions of BRICS countries are 
forecasted from 2022–2025. Based on the analytical find-
ings from the preceding discussion, the optimal forecast-
ing models and optimal breakpoints are selected, and the 
parameters are calculated as presented in Table 11, where 
c of the AGBPM used for China and ε of the NGBPM 
used for South Africa are both null values. The devel-
opment coefficient a and grey action b in Brazil were 
−0.058 and 410.774 before the breakpoint respectively, 
which changed to 0.017 and 568.634 after the breakpoint, 
indicating a transition from an increasing to a decreas-
ing trend in the fitted values of  CO2 emissions in Brazil. 
The development coefficient a and grey action b in Rus-
sia were −  0.021 and 1931.111 before the breakpoint 
respectively, which changed to 0.007 and 1979.598 after 
the breakpoint, suggesting a slowdown in the growth 
trend of the fitted values of  CO2 emissions in Russia. The 
development coefficient a and grey action b in India were 

− 0.048 and 1714.248 before the breakpoint respectively, 
which shifted to −  0.006 and 2535.500 after the break-
point, indicating a significant slowdown in the growth 
trend of the fitted values of  CO2 emissions in India. The 
development coefficient a in China was −  0.033 before 
the breakpoint, which shifted to − 0.020 after the break-
point, suggesting a slowdown in the growth trend of the 
fitted values of  CO2 emissions in China. The grey action 
b in South Africa was 503.248 before the breakpoint and 
decreased to 494.678 after the breakpoint, indicating a 
further expansion of the decreasing trend in the fitted 
values of  CO2 emissions in South Africa.

As presented in Table  12 and Fig.  22, the projections 
show that from 2022 to 2025,  CO2 emissions in Brazil 
and South Africa will decrease annually by 6.47% and 
1.6%, with average annual rates of decrease of 1.68% and 
0.40%, respectively. In contrast,  CO2 emissions in Russia, 
India and China will increase annually by 2.28%, 2.28% 
and 8.38%, with annual growth rates of 0.56%, 0.57% 
and 2.03%, respectively. The differences in  CO2 emis-
sions trends among the BRICS countries mainly stem 
from significant divergences in their development paths 
and energy structures: Brazil has achieved deep emission 
reductions through the large-scale application of bio-
fuels and a clean energy structure dominated by hydro-
power, complemented by rainforest protection policies 
that enhance its carbon sink capacity. Russia’s oil and 
gas export-oriented economy has driven  CO2 emissions 

Fig. 20 Simulation and prediction of  CO2 emissions in South Africa 
from 2009–2021

Table 10 Simulation and prediction errors for  CO2 emissions in South Africa

Error GM FGM GBPM OGBPM NOGBPM NGBPM AGBPM

MAPE (%) 1.1843 1.1843 2.0873 1.5940 1.5992 2.0688 1.7952

FMAPE (%) 5.9959 5.9959 2.9775 6.5838 5.1007 1.1436 5.5860

CMAPE (%) 1.9245 1.9245 2.2242 2.3616 2.1379 1.9265 2.3784

Fig. 21 Simulation and prediction errors for  CO2 emissions in South 
Africa
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upward, but the export of nuclear energy technology and 
an increase in the share of nuclear energy have partially 
mitigated carbon growth. As the global manufacturing 
hub, China’s coal-dominated energy structure and rapid 
urbanization process have propelled continuous growth 
in  CO2 emissions; however, with the intensification of 
emission reduction policies, China has made substantial 
investments in photovoltaic and wind power, and more 
advanced energy infrastructure and clean technology 
innovations have effectively reduced carbon intensity. 
India similarly faces emission pressures stemming from 
its reliance on coal-fired power and accelerated indus-
trialization, leading to a"carbon lock-in effect,"although 
the expansion of renewable energy has partially allevi-
ated the growth rate. South Africa, relying on the accel-
erated replacement of coal-fired power with renewable 
energy and the implementation of carbon tax policies, 
has seen relatively moderate reductions due to the inertia 
of its coal-fired power infrastructure and lagging indus-
trial transformation. These differences are essentially the 
result of a combination of countries’resource endow-
ments, industrial policies, and technological innovation 
capabilities.

Conclusion
In this paper, the concept of temporal breakpoints 
is introduced into grey models, and three new grey 
breakpoint forecasting models based on the GM(1,1), 
GBPM(1,1,t) and OGBPM(1,1,t) models are estab-
lished: the NOGBPM(1,1,t) with shocks acting on both 

the development coefficient a and the grey action b , the 
NGBPM(1,1,t) with shocks acting only on the grey action 
b , and the AGBPM(1,1,t) with shocks acting only on the 
development coefficient a . These three models consider 
external disturbances, use fuzzy time breakpoints to 
account for the effects of changes in external shocks on 
the system, include unified methods for parameter esti-
mation and the establishment of time response equa-
tions, and optimise the background values before and 
after breakpoints separately based on PSO. Second, 
to verify the effectiveness of the three grey breakpoint 
forecasting models, GM, FGM, GBPM and OGBPM are 
selected for comparison to simulate and forecast the car-
bon emission data in five BRICS countries. Based on the 
original data trends and policy analysis, time breakpoints 
and fuzzy breakpoint intervals are set, the optimal time 
breakpoints, parameter estimates, fitted values and pre-
dicted values of each model are obtained, and the pre-
diction performance of the seven models is compared. 
Finally, the model with the lowest combined error is 
selected as the optimal prediction model, and the opti-
mal time breakpoints are identified. The  CO2 emissions 
of the BRICS countries are predicted for the period of 
2022–2025. The main conclusions are as follows.

First, the introduction of time breakpoints into the grey 
model, including the utilization of time breakpoints and 
fuzzy breakpoint intervals, is applied to segregate the sys-
tem into two distinct segments before and after a change, 
thus improving the ability to fit data, especially for 

Table 11 Model selection and parameter estimation

Country Model t a b c ε α β MAPE (%)

Brazil NOGBPM 7 − 0.0580 410.7741 157.8596 0.0750 0.5366 0.3082 2.1755

Russia NOGBPM 5 − 0.0207 1931.1110 48.4874 0.0151 0.7619 0.0000 1.4638

India NOGBPM 10 − 0.0480 1714.2483 821.2520 0.0423 0.4830 0.0000 1.7543

China AGBPM 7 − 0.0333 9105.6289 – 0.0132 0.3117 0.7061 1.5060

South Africa NGBPM 6 0.0040 503.2481 − 8.5702 – 1.0000 0.3195 2.6125

Table 12 Projected  CO2 emissions in BRICS countries

Country 2021 2022 2023 2024 2025 2021–2025 2021–2025
Average 
annual growth 
rate

Brazil 464.7652 457.3116 449.6382 442.0935 434.6754 − 6.47% − 1.68%

Russia 2124.2891 2136.2880 2148.3547 2160.4896 2172.6930 2.28% 0.56%

India 2696.9682 2712.2274 2727.5729 2743.0052 2758.5248 2.28% 0.57%

China 11,744.0751 11,982.6640 12,226.1000 12,474.4815 12,727.9091 8.38% 2.03%

South Africa 470.0959 468.2048 466.3213 464.4453 462.5770 − 1.60% − 0.40%
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systems with complex trends due to shocks from external 
factors.

Second, the fitting and forecasting results show 
that the three new grey breakpoint forecasting mod-
els are more efficient and accurate than the GM(1,1), 
FGM(1,1), GBPM (1,1,t), and OGBPM(1,1,t) models. 
Of these, the NOGBPM(1,1,t) performs best in fitting 
data for Brazil, Russia and India, the NGBPM(1,1,t) is 
best for South Africa and the AGBPM(1,1,t) is best for 
China.

Third, by 2025, the  CO2 emissions (million tons) 
of Brazil, Russia, India, China and South Africa will 
be 434.6754, 2172.693, 2758.5248, 12,727.9091 and 

462.577, respectively. From 2022 to 2025,  CO2 emis-
sions in South Africa and Brazil will decrease annu-
ally, with annual rates of decline of 1.68% and 0.40%, 
respectively;  CO2 emissions in Russia, India and China 
will increase year by year, with annual growth rates of 
0.56%, 0.57% and 2.03%, respectively.

Based on the disparities in  CO2 emission trends and 
the potential for collaboration among BRICS countries, 
this study proposes the establishment of a collabora-
tive governance framework from the following dimen-
sions: Firstly, differentiated pathways for clean energy 
transitions should be formulated in accordance with 
the resource endowments of individual countries, with 

Fig. 22 Projected  CO2 emissions in BRICS countries from 2022–2025
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a focus on enhancing the sharing of renewable energy 
technologies and integrating low-carbon industrial 
chains. Secondly, a multilateral green financing platform 
should be established by leveraging the New Develop-
ment Bank to promote the interconnection of carbon 
markets and cross-border carbon credit offset mecha-
nisms, while exploring the application of local currency 
settlements in green investments. Thirdly, joint efforts 
should be made to tackle key technologies such as pho-
tovoltaics, nuclear energy, and Carbon Capture, Utiliza-
tion, and Storage (CCUS), and to develop a digital carbon 
monitoring and policy simulation system, thereby facili-
tating the commercialization of technological achieve-
ments and the sharing of intellectual property rights. 
Fourthly, a high-level dialogue mechanism for climate 
governance should be established to dynamically adjust 
Nationally Determined Contributions (NDCs) targets, 
pilot carbon border adjustment regulations, and pro-
mote mutual recognition of Environmental, Social, and 
Governance (ESG) standards, as well as the harmoniza-
tion of transition finance classifications. Lastly, it should 
also leverage the BRICS countries as a platform to forge 
consensus among developing nations, restructure inter-
national energy pricing power and the discourse system 
in climate negotiations, and drive reforms in the global 
supply mechanisms for green public goods.

Based on the analysis of the above examples, the grey 
breakpoint prediction models can be used not only for 
the prediction of data with obvious breakpoint character-
istics but also for the prediction of data with less obvious 
development trends, such as in the prediction of various 
systems in the post-epidemic era and the prediction of 
the trends of various systems under the implementation 
of relevant policies. Overall, these new models display 
strong adaptability. In addition, as this paper is based on 
the traditional GM(1,1) model, it is only a simple linear 
model. It may be possible to introduce time breakpoints 
into other nonlinear grey models, and their effectiveness 
and adaptability can be evaluated.
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